Chứng minh x2002+x2000+1 chia hết cho x2+x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong S1 có các số chia hết cho các thừa số ở S2
< = > S1 chia hết cho S2
=> ĐPCM
a/ Do \(x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2
Mà 1 ko chia hết cho 2 \(\Rightarrow x\left(x+1\right)+1\) ko chia hết cho 2
b/ \(x^2+x+1=x\left(x+1\right)+1\) giống hệt câu a
c/ Do 3 chia hết cho 3 nên \(3\left(x^2+2x\right)\) chia hết cho 3
Mà 1 ko chia hết cho 3 \(\Rightarrow3\left(x^2+2x\right)+1\) ko chia hết cho 3
d/ \(3x^2+6x+1=3\left(x^2+2x\right)+1\) giống hệt câu c
Bài 2:
\(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)