Tìm số tự nhiên x biết:
1/1.2+1/2.3+1/3.4+......+1/x.[x+1]=20/21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{19}{20}\)
\(\Rightarrow\) A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow\) A = 1 - \(\dfrac{1}{x+1}\)
\(\Rightarrow\) 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{19}{20}\)
\(\Rightarrow1-\dfrac{19}{20}=\dfrac{1}{x+1}\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{20}\)
\(\Rightarrow\) x + 1 = 20\(\Rightarrow\) x=19
\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\); \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\);.....; \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1-\frac{1}{x+1}=\frac{x}{x+1}\)
=> \(\frac{x}{x+1}=\frac{19}{20}\)=> 20x=19x+19 => x=19
ĐS: x=19
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}=\frac{19}{20}\)\(\frac{19}{20}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{20}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{19}{20}\)
\(\Rightarrow\frac{x}{x+1}=\frac{19}{20}\)
\(\Rightarrow20x=19x+19\)\(\Rightarrow x=19\)
Vậy \(x=19\)
\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)
\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{20}{21}\)
\(1-\dfrac{1}{x+1}\) \(=\dfrac{20}{21}\)
\(\dfrac{1}{x+1}\) \(=\) \(\dfrac{1}{21}\)
\(=>x+1=21\)
\(x=21-1\)
\(x=20\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{x.\left(x+1\right)}=\dfrac{20}{21}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{20}{21}\)
\(1-\dfrac{1}{x+1}=\dfrac{20}{21}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{20}{21}\)
\(\Leftrightarrow x+1=21\)
\(x=21-1\)
\(x=20\)
Vậy \(x=20\)