K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Nếu \(a=0\) thì \(\left(-5\right)a=0\)

Nếu \(a>0\) thì \(\left(-5\right)a< 0\)

Nếu \(a< 0\) thì \(\left(-5\right)a>0\)

11 tháng 4 2018

Nếu a = 0 thì (-5)a = 0

Nếu a > 0 thì (-5)a < 0

Nếu a < 0 thì 9-5)a > 0

20 tháng 5 2017

Nếu a = 0 thì (-5)a = 0

Nếu a > 0 thì (-5)a < 0

Nếu a < 0 thì 9-5)a > 0

11 tháng 4 2018

Nếu a = 0 thì (-5)a = 0

Nếu a > 0 thì (-5)a < 0

Nếu a < 0 thì 9-5)a > 0

haha

15 tháng 9 2018

2 ) b )

\(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)

25 tháng 3 2016

a) Gọi \(z_1,z_2\) là các nghiệm của phương trình với \(\left|z_1\right|=1\). Từ \(z_2=\frac{c}{a}.\frac{1}{z_1}\) kéo theo \(\left|z_2\right|=\left|\frac{c}{a}\right|.\frac{1}{\left|z_1\right|}=1\)

vì \(z_1+z_2=-\frac{b}{a},\left|a\right|=\left|b\right|\), ta có \(\left|z_1+z_2\right|^2=1\)

Hệ thức tương đương với 

\(\left(z_1+z_2\right)\left(\overline{z_1}+\overline{z_2}\right)=1\) tức là \(\left(z_1+z_2\right)\left(\frac{1}{z_1}+\frac{1}{z_2}\right)=1\)

\(\left(z_1+z_2\right)^2=z_1z_2\)

hay  \(\left(-\frac{b}{a}\right)^2=\frac{c}{a}\Rightarrow b^2=ac\)

25 tháng 3 2016

b) Theo câu a) \(b^2=ac,c^2=ab\). Nhân các hệ thức được \(b^2c^2=a^2bc\Rightarrow a^2=bc\)

Do đó \(a^2+b^2+c^2=ab+bc+ca\)

Hệ tương đương  với :

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tức là 

\(\left(a-b\right)^2+\left(b-c\right)^2+2\left(a-b\right)\left(b-c\right)+\left(c-a\right)^2=2\left(a-b\right)\left(b-c\right)\)

Kéo theo 

\(\left(a-c\right)^2=\left(a-b\right)\left(b-c\right)\)

Lấy giá trị tuyệt đối, được \(\beta^2=\gamma\alpha\)

Ở đây \(\alpha=\left|b-c\right|,\beta=\left|c-a\right|,\gamma=\left|a-b\right|\)

Tương tự được :

\(\alpha^2=\beta\gamma,\gamma^2=\alpha\beta,\)

Cộng các hệ thức, được :

\(\alpha^2+\beta^2+\gamma^2=\alpha\beta+\beta\gamma+\gamma\alpha\)

Tức là (\(\left(\alpha-\beta\right)^2+\left(\beta-\gamma\right)^2+\left(\gamma-\beta\right)^2=0\)

Do đó : \(\beta=\alpha=\gamma\)