Cho tỉ lệ thức : a/b = c/d
CMR : a^2- b^2/ ab = c^2 - d^2/cd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
<=>(\(a^2+b^2\))cd=ab(\(c^2+d^2\))
<=>\(a^2cd+b^2cd=abc^2+abd^2\)
<=>\(a^2cd-abc^2-abd^2+b^2cd=0\)
<=>ac(ad-bc)-bd(ad-bc)=0
<=>ac-bd=0
<=>ac=bd
=>\(\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{c^2}{d^2}\)
\(\frac{c}{d}=\frac{a}{b}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\),=> a=bk:c=dk
Ta có : \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{kb^2}{kd^2}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2) => \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (đpcm)
Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> Ta sẽ có : \(\dfrac{a}{c}\). \(\dfrac{b}{d}\) = \(\dfrac{ab}{cd}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) (*1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) (*2)
Từ (1);(2) => \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (ĐPCM)
Từ giả thiết: \(\frac{a}{b}=\frac{c}{d}\)=>ad=bc (1)
Ta có: ab(c2-d2)=abc2-abd2=acbc-adbd (2)
cd(a2-b2)=a2cd-b2cd=acad-bcbd (3)
Từ (1) ,(2),(3)=> ab(c2-d2)=cd(a2-b2)=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\) (đpcm)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{ab}{cd}\)
\(\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}=\frac{ca+cb}{ac+ad}=\frac{bc+db}{da+db}=\frac{ca-bd}{ca-bd}=1\)
\(\Rightarrow ca+cb=ac+ad\Rightarrow cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)
Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\) và \(\frac{c^2-d^2}{cd}\) ta có :
\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)
=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))
vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)
lâu lắm không làm nên không chắc đâu :v
Vì \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
Ta có \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
\(\Leftrightarrow a^2cd-b^2cd=c^2ab-d^2ab=0\)
\(\Leftrightarrow ad.ac-bc.bd-ca.bc+ad.bd=0\) (1)
Thay \(ad=bc\) ta được
\(\left(1\right)\Leftrightarrow bc.ac-bc.bd-ca.bc+bc.bd=0\)
\(\Leftrightarrow\left(bc.ac-ca.bc\right)+\left(bc.bd-bc.bd\right)=0\) (luôn đúng)
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\) (đpcm)