Cho P= \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\) và \(Q\)=\(\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{47}{3}+\dfrac{48}{2}+\dfrac{49}{1}\)
Hãy tính \(\dfrac{P}{Q}\)
HELP ME!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)
\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)
\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)
\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)
Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow\)\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}\)\(=\dfrac{1}{50}\)
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta được
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50S
=> S/P=1/50
Ta có:
P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\left(1+1+...+1\right)\)(có 49 chữ số 1)
P= \(\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
P= \(\dfrac{50}{49}+\dfrac{50}{48}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
P= \(50.\left(\dfrac{1}{50}+\dfrac{1}{49}+...+\dfrac{1}{2}\right)\)
⇒ \(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}}{50.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)}\)
⇒ \(\dfrac{S}{P}=\dfrac{1}{50}\)
Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)
Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
\(\dfrac{x-1}{50}+\dfrac{x-2}{49}=\dfrac{x-3}{48}+\dfrac{x-4}{47}\)
\(\Rightarrow\dfrac{x-1}{50}-1+\dfrac{x-2}{49}-1=\dfrac{x-3}{48}-1+\dfrac{x-4}{47}-1\)
\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}=\dfrac{x-51}{48}+\dfrac{x-51}{47}\)
\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}-\dfrac{x-51}{48}-\dfrac{x-51}{47}=0\)
\(\Rightarrow\left(x-51\right)\left(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\right)=0\)
Vì \(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\ne0\) nên \(x-51=0\Rightarrow x=51\)
\(\dfrac{x+25}{6}+\dfrac{x+20}{11}+\dfrac{x+16}{15}+3=0\)
\(\Rightarrow\dfrac{x+25}{6}+1+\dfrac{x+20}{11}+1+\dfrac{x+16}{15}+1=0\)
\(\Rightarrow\dfrac{x+31}{6}+\dfrac{x+31}{11}+\dfrac{x+31}{15}=0\)
\(\Rightarrow\left(x+31\right)\left(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\right)=0\)
Vì \(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\ne0\) nên \(x+31=0\Rightarrow x=-31\)
\(\dfrac{x-15}{6}+\dfrac{x-10}{11}=\dfrac{x-3}{18}+\dfrac{x-7}{14}\)
\(\Rightarrow\dfrac{x-15}{6}-1+\dfrac{x-10}{11}-1=\dfrac{x-3}{18}-1+\dfrac{x-7}{14}-1\)
\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}=\dfrac{x-21}{18}+\dfrac{x-21}{14}\)
\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}-\dfrac{x-21}{18}-\dfrac{x-21}{14}=0\)
\(\Rightarrow\left(x-21\right)\left(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\right)=0\)
Vì \(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\ne0\) nên \(x-21=0\Rightarrow x=21\)
Giải phương trình sau:
\(\dfrac{x}{50}\) +\(\dfrac{x_{ }-1}{49}\)+\(\dfrac{x-2}{48}\)+\(\dfrac{x-3}{47}\)+\(\dfrac{x-150}{25}\)= 0
⇔ \(\dfrac{\left(x-50\right)+50}{50}\)+\(\dfrac{\left(x-50\right)+49}{49}\)+\(\dfrac{\left(x-50\right)+48}{48}\)+\(\dfrac{\left(x-50\right)-100}{25}\)= 0
⇔\(\dfrac{x-50}{50}\)+ 1 + \(\dfrac{x-50}{49}\)+1+\(\dfrac{x-50}{48}\)+1+\(\dfrac{x-50}{47}\)+1+\(\dfrac{x-50}{25}\)-4 = 0
⇔\(\dfrac{x-50}{50}\)+\(\dfrac{x-50}{49}\)+\(\dfrac{x-50}{48}\)+\(\dfrac{x-50}{47}\)+\(\dfrac{x-50}{25}\)= 0
⇔ (x - 50 ) ( \(\dfrac{1}{50}\)+ \(\dfrac{1}{49}\)+\(\dfrac{1}{48}\)+\(\dfrac{1}{47}\)+\(\dfrac{1}{25}\)) = 0
⇔ x-50 =\(\dfrac{0}{\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}}\)
⇔ x- 50 = 0
⇔ x = 50
vậy S = \(\left\{50\right\}\)
\(Q=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{47}{3}+\dfrac{48}{2}+\dfrac{49}{1}\\ =\dfrac{1}{49}+1+\dfrac{2}{48}+1+\dfrac{3}{47}+1+...+\dfrac{47}{3}+1+\dfrac{48}{2}+1+1\\ =\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{3}+\dfrac{50}{2}+\dfrac{50}{50}\\ =50\cdot\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+...+\dfrac{1}{3}+\dfrac{1}{2}\right)\\ =50\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{P}{Q}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}}{50\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
bn thiếu dấu ngoặc ở phép thứ 2 rồi