Hàm số \(y=f\left(x\right)\) được cho bởi công thức \(f\left(x\right)=2x^2-5\)
Hãy tính : \(f\left(1\right);f\left(-2\right);f\left(0\right);f\left(2\right)\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$
$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$
Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$
Ta có: y=f(x)=x2−2y=f(x)=x2−2
Thay f(2); f(1); f(0); f(-1); f(-2) vào hàm số:
f(2)=22−2=4−2=2f(2)=22−2=4−2=2
f(1)=12−2=1−2=−1f(1)=12−2=1−2=−1
f(0)=02−2=−2f(0)=02−2=−2
f(−1)=(−1)2−2=1−2=−1f(−1)=(−1)2−2=1−2=−1
f(−2)=(−2)2−2=4−2=2
\(f'\left(x\right)=4x\Rightarrow y=2x^2+1-4x\)
\(y'\left(x\right)=4x-4=0\Rightarrow x=1\)
f (1) = 2 . 12 - 5 = -3
f (-2) = 2 . (-2)2 - 5 = 3
f (0) = 2 . 02 - 5 = -5
f (2) = 2 . 22 - 5 = 3
Có: \(f\left(x\right)=2x^2-5\)
\(\Rightarrow f\left(1\right)=2.1^2-5=-3\)
\(f\left(-2\right)=2.\left(-2\right)^2-5=3\)
\(f\left(0\right)=2.0^2-5=-5\)
\(f\left(2\right)=2.2^2-5=3\)