K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

NV
12 tháng 8 2021

Do tam giác ABC cân tại A nên AH là đường cao đồng thời là trung trực của BC

Mà tâm của đường tròn ngoại tiếp là giao của 3 đường trung trực hay tâm O nằm trên 3 đường trung trực

\(\Rightarrow O\in AH\)

Do AD là đường kính \(\Rightarrow\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn 

\(\Rightarrow\Delta ABD\) vuông tại B

Áp dụng hệ thức lượng:

\(AB^2=AH.AD\Rightarrow AD=\dfrac{AB^2}{AH}=7,2\left(cm\right)\) 

NV
12 tháng 8 2021

undefined

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{3^2+3^2-BC^2}{2\cdot3\cdot3}=-\dfrac{1}{2}\)

=>18-BC^2=-9

=>BC^2=27

=>\(BC=3\sqrt{3}\left(cm\right)\)

\(\dfrac{BC}{sinA}=2R\)

=>\(2\cdot R=3\sqrt{3}:sin120=3\sqrt{3}:\dfrac{1}{2}=6\sqrt{3}\)

=>\(R=3\sqrt{3}\)