K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow1-11< =3m< =\left(9-9\right)\cdot A=0\)

=>-10<=3m<=0

hay \(m\in\left\{-3;-2;-1;0\right\}\)

23 tháng 11 2017

\(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}\)

\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{n\left(n+1\right)}\)

\(=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)

\(=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(=2.\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{2016}{2017}:2=\dfrac{1}{2}-\dfrac{1}{n+1}\)

\(\dfrac{1008}{2017}=\dfrac{1}{2}-\dfrac{1}{n+1}\)

\(\Rightarrow\dfrac{1}{n+1}=\dfrac{1}{4034}\)

=>n+1=4034

n=4034-1

n=4033

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Lời giải:

Trong TH này ta thêm điều kiện $x$ là số nguyên dương.

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(=1-\frac{1}{x+1}=\frac{x}{x+1}\)

Vậy \(\frac{x}{x+1}=\frac{\sqrt{2017-x}+2016}{\sqrt{2016-x}+2017}\)

\(\Rightarrow x\sqrt{2016-x}+2017x=(x+1)\sqrt{2017-x}+2016(x+1)\)

\(\Leftrightarrow x\sqrt{2016-x}=(x+1)\sqrt{2017-x}+2016-x\)

\(\Leftrightarrow x(\sqrt{2017-x}-\sqrt{2016-x})+\sqrt{2017-x}+2016-x=0\)

\(\Leftrightarrow \frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}+\sqrt{2017-x}+(2016-x)=0\)

Hiển nhiên ta thấy:

\(\frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}>0\)

\(\sqrt{2017-x}\geq 0\)

\(2016-x\geq 0\)

Do đó pt trên vô nghiệm

Tức là không tìm đc $x$ thỏa mãn.

27 tháng 3 2017

Bài 2:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)

Vậy \(x=2016\)

25 tháng 12 2018

2.x=2016

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\left(\dfrac{1}{2017}-1\right)\\ A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)...\left(-\dfrac{2014}{2015}\right)\left(-\dfrac{2015}{2016}\right)\left(-\dfrac{2016}{2017}\right)\\ A=\dfrac{1.2.3.4...2014.2015.2016}{2.3.4...2015.2016.2017}=\dfrac{1}{2017}\)

\(B=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right)\left(-1\dfrac{1}{2016}\right)\left(-1\dfrac{1}{2017}\right)\\ B=\left(-\dfrac{3}{2}\right)\left(-\dfrac{4}{3}\right)\left(-\dfrac{5}{4}\right)...\left(-\dfrac{2016}{2015}\right)\left(-\dfrac{2017}{2016}\right)\left(-\dfrac{2018}{2017}\right)\\ B=\dfrac{3.4.5...2016.2017.2018}{2.3.4...2015.2016.2017}=\dfrac{2018}{2}=1009\)

\(M=A.B=\dfrac{1}{2017}.1009=\dfrac{1009}{2017}\)

26 tháng 11 2021

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

26 tháng 11 2021

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)