K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)

\(=\dfrac{1}{2}-\dfrac{1}{4042110}< \dfrac{1}{2}\)

\(\Rightarrow\) \(S< P\)

Vậy \(S< P\)

8 tháng 5 2017

Cảm ơn nhá haha

22 tháng 4 2021

Tìm y:

-y:1/2-5/2=4+1/2

-y:1/2 = 4+1/2+5/2

-y:1/2 = 7

-y = 7.2

y = -14

Vậy y = -14

7 tháng 4 2022

a) \(A=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(A=2^{2010}\left(2^{2009}+2^{2008}+...+2+1\right)\)

Đặt \(\text{A = 1 + 2 + . . . + 2^{2008} + 2^{2009}}\)

\(\text{⇒ 2 A = 2 + 2 2 + . . + 2^{2010}}\)

⇒ \(A=2^{2010}-1\)

⇒ \(A=2^{2010}-\left(2^{2010}-1\right)\)

⇒ \(A=1\)

7 tháng 4 2022

b) \(B=2072\)

c) \(\dfrac{4949}{19800}\)

Xin lỗi mình không có nhiều thời gian để giải thích trên đây á nên tạm gửi ảnh mình tạo nhé . Học tốt !

undefined

16 tháng 3 2021

câu b bài 2:

\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)

\(=\dfrac{1}{5}\)

câu a bài 2:

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)

\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)

15 tháng 6 2018

Bài 1a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2018.2019}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

b) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)

\(2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\)

\(2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)

\(2S=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

\(S=\dfrac{1009}{2019}\)

Còn lại bạn làm tương tự hết nhé .

28 tháng 4 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{2014.2015.2016}\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2015.2016}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2015.2016}\right)\)

\(A=\dfrac{1}{4}-\dfrac{1}{2.2015.2016}< \dfrac{1}{4}\)

\(=>A< \dfrac{1}{4}\)

Chúc bn học tốt

28 tháng 4 2017

Cảm ơn bn nhiều