tìm m để đồ thị hàm số \(y=\sqrt{2x^2+mx}+mx+2m^2\) có tiệm cận ngang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đường thẳng y = y 0 được gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y = f x nếu lim x → + ∞ f x = y 0 hoặc lim x → − ∞ f x = y 0
y = m x − x 2 − 2 x + 2 = m 2 x 2 − x 2 + 2 x − 2 m x + x 2 − 2 x + 2 = m 2 − 1 x 2 + 2 x − 2 m x + x 2 − 2 x + 2
Để hàm phân thức có tiệm cận ngang thì bậc tử phải nhỏ hơn hoặc bằng bậc mẫu ⇔ m 2 − 1 = 0 ⇔ m = 1 m = − 1
Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán.
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
Đáp án A
y = m x − 2 m + 1 x − m = g x x − m ;
Đồ thị hàm số có tiệm cận đứng
⇔ g m ≠ 0 ⇔ m 2 − 2 m + 1 ≠ 0 ⇔ m ≠ 1.
\(\lim\limits_{x\rightarrow\infty}\dfrac{x^2+m}{x^2+mx}=1\Rightarrow y=1\) là 1 tiệm cận ngang
Hàm có 3 tiệm cận khi \(x^2+mx=0\) có 2 nghiệm pb và khác nghiệm của \(x^2+m=0\)
\(x^2+mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-m\end{matrix}\right.\)
\(\Rightarrow m\ne0\) thay vào \(x^2+m\Rightarrow m^2+m\ne0\Rightarrow m\ne\left\{0;-1\right\}\)
Vậy \(m\ne\left\{0;-1\right\}\)
Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)
\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)