Điền dấu " <, >" vào chỗ trống cho đúng :
a) \(\left(0,6\right)^2........\left(0,6\right)\)
b) \(\left(1,3\right)^2.........1,3\)
" vào chỗ trống cho đúng : a) \(\left(0,6\right)^2........\left(0,6\right)\) b) \(\left(1,3\right)^2.........1,3\)">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (-2)+ (-5) = -7
Vì: -7< -5
=> (-2)+ (-5) < -7
b) (-3)+ (-8)= -11
Vì: (-10) > (-11)
=> -10> (-3)+ (-8)
a, \(\left(-6\right)+\left(-3\right).....\left(-6\right)\)
\(\left(-9\right)< \left(-6\right)\)
Vậy \(\left(-6\right)+\left(-3\right)< \left(-6\right)\)
b,\(\left(-9\right)+\left(-12\right)....\left(-20\right)\)
\(\left(-21\right)< \left(-20\right)\)
\(\Rightarrow\left(-9\right)+\left(-12\right)< \left(-20\right)\)
\(a\)) \(\left|3\right|< \left|5\right|\)
\(b\))\(\left|-3\right|< \left|-5\right|\)
\(c\)) \(\left|-1\right|>\left|0\right|\)
\(\left|2\right|=\left|-2\right|\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(-\dfrac{1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-\dfrac{1}{3}+1}}{\dfrac{1}{4}+\dfrac{5}{4}-\dfrac{13}{10}}-\dfrac{\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{2}{5}}{\dfrac{3}{5}-\dfrac{2}{3}\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{35}{12}}}{\dfrac{1}{5}}-\dfrac{-\dfrac{1}{60}}{\dfrac{11}{10}}\)
\(A=\dfrac{5\sqrt{105}}{6}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}}{66}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}+11}{66}\)
a) (-5) . (-4) + (-5) . 14 = (-5 ) . [ (-4) + 14 ] = -50
b ) 3 . ( 5 + 8 ) = 13 . ( -3 ) + 13 . 8 = 65
\(\dfrac{5(x+y)}{2}=\dfrac{5(x+y)(x-y)}{2(x-y)} \\=\dfrac{5(x^2-y^2)}{2(x-y)}=\dfrac{5x^2-5y^2}{2x-2y}\)
a) \(\left(x-1,3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x-1,3=3\\x-1,3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
b) 24-x = 32
⇔ 24-x = 25
⇔ 4-x=5
⇔ x=-1
c) (x+1,5)2+(y-2,5)10=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
\(a,\left(x-1,3\right)^2=9\\ \Leftrightarrow\left(x-1,3+9\right)\left(x-1,3-9\right)=0\\ \Leftrightarrow\left(x-7,7\right)\left(x-10,3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7,7=\dfrac{77}{10}\\x=10,3=\dfrac{103}{10}\end{matrix}\right.\)
\(b,2^{4-x}=32=2^5\\ \Leftrightarrow4-x=5\\ \Leftrightarrow x=-1\)
\(c,\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1,5=-\dfrac{3}{2}\\y=2,5=\dfrac{5}{2}\end{matrix}\right.\)
a) (0,6)2 < 0,6
Do (0,6)2=0,36 < 0,6
b) (1,3)2 > 1,3
Do (1,3)2=1,69 > 1,3