" vào chỗ trống cho thích hợp : a) \(a\left(m-n\right)...........b\left(m-n\right)\) b) \(m\left(a-b\right).............n\left(a-b\right)\)">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: m<n nên m-n<0

a>b nên a(m-n)<b(m-n)

b: a>b nên a-b>0

m(a-b)<n(a-b)

18 tháng 5 2017

a) a=15a′(a′∈N)a=15a′(a′∈N)

b=15b′(b′∈N)b=15b′(b′∈N)

15 là ước chung của a và b.

b) a=15a′(a′∈N)a=15a′(a′∈N)

b=15b′(b′∈N)b=15b′(b′∈N)

ƯCLN(a′,b′)=1(a′,b′)=1

15 là ƯCLN của a và b.

31 tháng 10 2017

a) Ước chung

b) ƯCLN.

11 tháng 3 2017

còn m,n thì sao

11 tháng 3 2017

m =4 , n =16

AH
Akai Haruma
Giáo viên
1 tháng 8 2019

Lời giải:

Thay $1=a+b+c$ ta có:

\(A=\frac{(a+1)(b+1)(c+1)}{(1-a)(1-b)(1-c)}=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{(a+b+c-a)(a+b+c-b)(a+b+c-c)}\)

\(=\frac{(2a+b+c)(a+2b+c)(a+b+2c)}{(a+b)(b+c)(c+a)}\)

Áp dụng BĐT Cô-si cho các số dương ta có:
\(2a+b+c=(a+b)+(a+c)\geq 2\sqrt{(a+b)(a+c)}\)

\(a+2b+c=(b+c)+(b+a)\geq 2\sqrt{(b+c)(b+a)}\)

\(a+b+2c=(c+a)+(c+b)\geq 2\sqrt{(c+a)(c+b)}\)

Nhân theo vế:

\(\Rightarrow (2a+b+c)(a+2b+c)(a+b+2c)\geq 8(a+b)(b+c)(c+a)\)

Do đó: \(A\geq \frac{8(a+b)(b+c)(c+a)}{(a+b)(b+c)(c+a)}=8\)

Vậy GTNN của $A$ là $8$. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

17 tháng 9 2018

M=a(a+b)(a+c)

N=b(b+c)(b+a)

P=c(c+a)(c+b)

Có a+b+c=0

=> a+b=-c

b+c=-a

a+c=-b

=> M=a(-c)(-b)

=abc

N=b(-a)(-c)

=bac

P=c(-b)(-a)

=cba

=> M=N=P(đpcm)

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

19 tháng 8 2016

\(a+b+c=0\)

\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

THAY \(a+b=-c;a+c=-b;b+c=-a\)VÀO M;N;P TA CÓ:
\(M=a.\left(-c\right).\left(-b\right)=a.b.c\)(1)

\(N=b.\left(-a\right).\left(-c\right)=a.b.c\)(2)

\(P=c.\left(-b\right).\left(-a\right)=a.b.c\)(3)
Từ (1) ; (2) ; (3) Ta có 

\(M=N=P\left(=a.b.c\right)\)(đpcm)

2 tháng 6 2019

Câu 1 : A

Câu 2 : B

2 tháng 6 2019

Câu 1 : A

Câu 2 : B

( vì có khi a = 0 thì ....... )