Cho \(a>b\) và \(m< n\), hãy đặt dấu " <, >" vào chỗ trống cho thích hợp :
a) \(a\left(m-n\right)...........b\left(m-n\right)\)
b) \(m\left(a-b\right).............n\left(a-b\right)\)
" vào chỗ trống cho thích hợp : a) \(a\left(m-n\right)...........b\left(m-n\right)\) b) \(m\left(a-b\right).............n\left(a-b\right)\)">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a=15a′(a′∈N)a=15a′(a′∈N)
b=15b′(b′∈N)b=15b′(b′∈N)
15 là ước chung của a và b.
b) a=15a′(a′∈N)a=15a′(a′∈N)
b=15b′(b′∈N)b=15b′(b′∈N)
ƯCLN(a′,b′)=1(a′,b′)=1
15 là ƯCLN của a và b.
Lời giải:
Thay $1=a+b+c$ ta có:
\(A=\frac{(a+1)(b+1)(c+1)}{(1-a)(1-b)(1-c)}=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{(a+b+c-a)(a+b+c-b)(a+b+c-c)}\)
\(=\frac{(2a+b+c)(a+2b+c)(a+b+2c)}{(a+b)(b+c)(c+a)}\)
Áp dụng BĐT Cô-si cho các số dương ta có:
\(2a+b+c=(a+b)+(a+c)\geq 2\sqrt{(a+b)(a+c)}\)
\(a+2b+c=(b+c)+(b+a)\geq 2\sqrt{(b+c)(b+a)}\)
\(a+b+2c=(c+a)+(c+b)\geq 2\sqrt{(c+a)(c+b)}\)
Nhân theo vế:
\(\Rightarrow (2a+b+c)(a+2b+c)(a+b+2c)\geq 8(a+b)(b+c)(c+a)\)
Do đó: \(A\geq \frac{8(a+b)(b+c)(c+a)}{(a+b)(b+c)(c+a)}=8\)
Vậy GTNN của $A$ là $8$. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
\(a+b+c=0\)
\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
THAY \(a+b=-c;a+c=-b;b+c=-a\)VÀO M;N;P TA CÓ:
\(M=a.\left(-c\right).\left(-b\right)=a.b.c\)(1)
\(N=b.\left(-a\right).\left(-c\right)=a.b.c\)(2)
\(P=c.\left(-b\right).\left(-a\right)=a.b.c\)(3)
Từ (1) ; (2) ; (3) Ta có
\(M=N=P\left(=a.b.c\right)\)(đpcm)
a: m<n nên m-n<0
a>b nên a(m-n)<b(m-n)
b: a>b nên a-b>0
m(a-b)<n(a-b)