Cho tg ABC , AB = AC .Trên các cạnh AB , AC lần lượt lấy 2 điểm P , Q sao cho AP = AQ.Hai đoạn thẳng CP , BP cắt nhau tại O.C/m rằng:
a) Tg OBC cân
b) Điểm O cách đều 2 cạnh AB , AC.
c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔPBC và ΔQCB có
PB=QC
\(\widehat{PBC}=\widehat{QCB}\)
BC chung
Do đo: ΔPBC=ΔQCB
Suy ra: \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
b: OB=OC
AB=AC
Do đó: AO là đường trung trực của BC
Ta có: ΔABC cân tại A
mà AO là đường trung trực
nên AO là đường phân giác
hay O cách đều hai cạnh AB và AC
ΔOBC cân tại O ⇒ OB = OC.
ΔAOB và ΔAOC có: AO chung, AB = AC (giả thiết), OB = OC (cmt)
⇒ ΔAOB = ΔAOC (c.c.c).
⇒ ∠BAO = ∠CAO
⇒ AO là tia phân giác của góc BAC
⇒ O cách đều hai cạnh AB, AC
Gọi giao điểm AO với BC là H.
ΔAHB và ΔAHC có:
cạnh AH chung,
AB = AC
∠(BAH) = ∠(CAH) (theo b).
⇒ ΔAHB = ΔAHC (c.g.c)
⇒ HB = HC và ∠(AHB) = ∠(AHC)
Lại có: ∠(AHB) + ∠(AHC) = 180º ( hai góc kề bù)
Suy ra: ∠(AHB) = ∠(AHC) = 90º
tức là AO ⊥ BC và AO đi qua trung điểm của BC.