cho f(x)= ax3+bx2+cx+d, trong đó a, b, c, d là hằng số và thỏa mãn: b=3a+c. chứng tỏ f(1)=f(-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Cho f(x)=ax3+bx2+cx+d , trong đó a,b,c,d là hằng số và thoả mãn: b=3a+c, Chứng tỏ rằng: f(1)=f(2)
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Từ (1) và (2) ➩ f(1) = f(2) [= 4a + 2 + d]
Thay b=3a+c vào f(x) ta được:
f(x)=ax3+(3a+c)x2+cx+d
=ax3+3ax2+cx2+cx+d
Suy ra: f(1).f(2)=(a.13+3a.12+c.12+c.1+d)[a.(-2)3+3a.(-2)2+c.(-2)2+c.(-2)+d]
=(a+3a+c+c+d)(-8a+12a+4c-2c+d)
=(4a+2c+d)(4a+2c+d)
=(4a+2c+d)2
Mà a,b,c,d là số nguyên nên: f(1).f(2) là bình phương của 1 số nguyên
Thay b = 3a + c vào f(x) = ax3 + bx2 + cx + d
Ta có: ax3 + (3a + c)x2 + cx + d = ax3 + 3ax2 + cx2 + cx + d
Lại có: f(1) = a . 13 + 3a . 12 + c . 12 + c . 1 + d = a + 3a + c + c + d = 4a + 2c + d (1)
và f(-2) = a . (-2)3 + 3a . (-2)2 + c. (-2)2 + c . (-2) + d = -8a + 12a + 4c - 2c + d = 4a + 2c + d (2)
Từ (1) và (2) => f(1) = f(-2) (đpcm)
Ta có :
\(f\left(x\right)=ax^3+bx^2+cx+d\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^3+b.1^2+c.1+d\\f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.2+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a+b+c+d\\f\left(2\right)=a.-8+b.4+c.2+d\end{cases}}\)
Do b = 3a = c
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=3a+3a+3a+d\\f\left(-2\right)=a.-8+3a.4+3a.2+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=9a+d\\f\left(-2\right)=-8a+12a+6a+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=9a+d\\f\left(-2\right)=10a+d\end{cases}}\)
Đến bước này , bạn tự làm tiếp nhé .
Chúc bạn học tốt !!!
tìm x từ 2x-4 rồi thay vào x^2-ax+2
đặt x^2 -ax+2 bằng 0 sau đó tìm dc a
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
Giải:
Thay \(b=3a+c\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=ax^3+\left(3a+c\right)x^2+cx+d\)
\(=ax^3+3ax^2+cx^2+cx+d\)
Từ đó ta có:
\(f\left(1\right)=a.1^3+3a.1^2+c.1^2+c.1+d\)
\(=a+3a+c+c+d=4a+2c+d\left(1\right)\)
Ta lại có:
\(f\left(-2\right)=a.\left(-2\right)^3+3a.\left(-2\right)^2+c.\left(-2\right)^2\) \(+c.\left(-2\right)+d\)
\(=-8a+12a+4c-2c+d=\) \(4a+2c+d\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(f\left(1\right)=f\left(-2\right)\left(=4a+2c+d\right)\) (Đpcm)