giải các pt sau:
1).\(\left(x^2-x+\sqrt{2}-2\right)\sqrt{1-2x}=0\)
2).\(4\sqrt{1+x}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)
\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)
\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow a=3b\)
\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)
\(\Leftrightarrow x^2-x=9\left(x+1\right)\)
\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)
2.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:
\(x^3+3\left(x^2-4a^2\right)a=0\)
\(\Leftrightarrow x^3+3ax^2-4a^3=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)
1. ĐKXĐ: $x\leq \frac{1}{2}$
PT \(\Leftrightarrow [(x^2-2)-(x-\sqrt{2})]\sqrt{1-2x}=0\)
\(\Leftrightarrow (x-\sqrt{2})(x+\sqrt{2}-1)\sqrt{1-2x}=0\)
\(\Leftrightarrow \left[\begin{matrix} x-\sqrt{2}=0\\ x+\sqrt{2}-1=0\\ \sqrt{1-2x}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\sqrt{2}\\ x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)
Kết hợp đkxđ suy ra \(\left[\begin{matrix} x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)
2. ĐKXĐ: $-1\leq x\leq 1$
Đặt $\sqrt{1+x}=a; \sqrt{1-x}=b(a,b\geq 0)$. Khi đó ta có:
$4a-\frac{a^2+b^2}{2}=\frac{3(a^2-b^2)}{2}+2b+ab=0$
$\Leftrightarrow 2a^2-b^2+ab-4a+2b=0$
$\Leftrightarrow (a+b-2)(2a-b)=0$
Xét 2 TH:
TH1: $a+b-2=0$
$\Leftrightarrow \sqrt{1-x}+\sqrt{1+x}=2$
$\Leftrightarrow 2+2\sqrt{1-x^2}=4$
$\Leftrightarrow \sqrt{1-x^2}=1$
$\Leftrightarrow x=0$ (tm)
TH2: $2a-b=0$
$\Leftrightarrow 2\sqrt{1+x}=\sqrt{1-x}$
$\Leftrightarrow 4(x+1)=1-x$
$\Leftrightarrow x=\frac{-3}{5}$ (tm)
Vậy.........