các bạn giúp mik bài tập số 53 sgk toán 7 trang 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý tổng ba góc trong một tam giác bằng 180º ta có:
- Hình 47
x + 90o + 55o = 180o
x = 180o - 90o - 55o
x = 35o
- Hình 48
x + 30o + 40o = 180o
x = 180o - 30o - 40o
x = 110o
- Hình 49
x + x + 50o = 180o
2x = 180o - 50o
x = 65o
Áp dụng định lý góc ngoài của tam giác ta có:
- Hình 50
y = 60o + 40o
y = 100o
x + 40o = 180o (2 góc kề bù)
x = 140o
- Hình 51
Áp dụng định lý góc ngoài trong tam giác ABD có: x = 70º + 40º = 110º
Áp dụng định lý tổng ba góc trong tam giác ADC có:
y + 110º + 40º = 180º ⇒ y = 30º.
Tỉ số \(6\frac{1}{\frac{5}{5\frac{1}{6}}}\) có thể rút gọn thành \(\frac{6}{5}\).Thử lại: \(6\frac{1}{\frac{5}{5\frac{1}{6}}}\)=\(\frac{31}{\frac{5}{\frac{31}{6}}}\)=\(\frac{31}{5}\).\(\frac{6}{31}\)=\(\frac{6}{5}\)
ta có thể viết tỉ số khác cũng có thể "rút gọn" như vậy:VD: \(1\frac{7}{\frac{9}{2\frac{1}{7}}}\)=\(\frac{7}{8}\)
53. Tỉ số \(6\frac{1}{\frac{5}{5\frac{1}{6}}}\) có thể rút gọn như sau: \(6\frac{1}{\frac{5}{5\frac{1}{6}}}=\frac{6}{5}\)
-Thử lại : Ta có \(6\frac{1}{\frac{5}{5\frac{1}{6}}}\) = \(\frac{31}{\frac{5}{\frac{31}{6}}}\) = \(\frac{31}{5}.\frac{6}{31}=\frac{6}{5}\left(đúng\right)\)
-Ta có thể viết đươc lác tỉ số khác cũng có thể rút gọn như vậy.
Ví dụ: \(7\frac{1}{\frac{6}{6\frac{1}{7}}}=\frac{7}{6}\)hoặc\(9\frac{1}{\frac{5}{5\frac{1}{9}}}=\frac{9}{5}\)hoặc \(12\frac{1}{\frac{9}{9\frac{1}{12}}}=\frac{12}{9}\)
Giải:
∆AHB và ∆KBH có
AH=KH ( gt )
=
BH cạnh chung .
Nên ∆AHB=∆KBH(c.g.c)
Suy ra: =
Vậy BH là tia phân giác của góc B.
Tương tự ∆AHC =∆KHC ( c . g . c )
Suy ra: =
Vậy CH là tia phân giác của góc C
p/s: Very làm biếng open sách so copy mạng =]]]
TL
a) Ta có ˆBIKBIK^ là góc ngoài tại đỉnh II của ΔBAIΔBAI.
Nên ˆBIK=ˆBAI+ˆABI>ˆBAIBIK^=BAI^+ABI^>BAI^
Mà ˆBAK=ˆBAIBAK^=BAI^
Vậy ˆBIK>ˆBAKBIK^>BAK^ (1)
b) Ta có ˆCIKCIK^ là góc ngoài tại đỉnh II của ΔAICΔAIC
nên ˆCIK=ˆCAI+ˆICA>ˆCAICIK^=CAI^+ICA^>CAI^
Hay ˆCIK>ˆCAICIK^>CAI^ (2)
Từ (1) và (2) ta có:
ˆBIK+ˆCIK>ˆBAK+ˆCAIBIK^+CIK^>BAK^+CAI^
⇒ˆBIC>ˆBAC⇒BIC^>BAC^.
Hok tốt nha bn
#Kirito