K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

Thử:

\(A=1+3+3^2+3^3+...+3^{2014}\)

\(\Rightarrow3A=3.\left(1+3+3^2+3^3+...+3^{2014}\right)\)

\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{2015}\)

\(\Rightarrow2A=3+3^2+3^3+3^4+...+3^{2015}-\left(1+3+3^2+3^3+...+3^{2014}\right)\)

\(\Rightarrow2A=3^{2015}-1\)

Lại có: \(3^{2015}-1=3^{2012}.3^3-1=\left(3^4\right)^{503}.27-1=81^{503}.27-1\) \(=\left(...1\right).27-1=\left(...7\right)-1=\left(...6\right)\)

Vậy: A có tận cùng là 6

20 tháng 10 2016

S tận cùng là 5

P tận cùng là 0

k mình nhé

18 tháng 1 2020

Ta có: S = 1 + 3 + 32 + 33 + ... + 32014        (1)

    => 3S = 3(1 + 3 + 32 + 33 + ... + 32014)

    => 3S = 3 + 32 + 33 + ... + 32014 + 32015 (2)

Ta lấy (2) - (1):

=> 3S - S = (3 + 32 + 33 + ... + 32014 + 32015) - (1 + 3 + 32 + 33 + ... + 32014)

=>     2S   =                 32015 - 1

=>        S  = 32015 - 1 : 2

Ta thấy : 32015 - 1 : 2 = (34) . (32011) : 2 = (...1) . (...1) :2 

=> S không phải là số chính phương.

18 tháng 1 2020

Ta có : S=1+3+32+33+...+32014

\(\Rightarrow\)3S=3+32+33+34+...+32015

\(\Rightarrow\)3S-S=(3+32+33+34+...+32015)-(1+3+32+33+...+32014)

\(\Rightarrow\)2S=1+32015

Ta có : 32015=33.(34)503=27.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

\(\Rightarrow\)2S=1+32015=1+\(\left(\overline{...7}\right)\)=\(\overline{...8}\)

\(\Rightarrow\)Chữ số tận cùng của 2S hay S là 8

Mà không có số chính phương nào có chữ số tận cùng nào là 8

\(\Rightarrow\)S không là số chính phương.

Vậy S không là số chính phương.