Chứng minh phương trình \(x+\left|x\right|=0\) nghiệm đúng với mọi \(x\le0\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)
\(f\left(x\right)\) xác định và liên tục trên R
\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)
\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)
\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)
\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)
\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)
\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)
Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt
2.
Đặt \(t=g\left(x\right)=x.cosx\)
\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)
\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)
Hàm \(f\left(t\right)\) xác định và liên tục trên R
\(f\left(1\right)=1>0\)
\(f\left(-2\right)=-8< 0\)
\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m
Xét hàm \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)
Hàm \(f\left(x\right)\) là hàm liên tục trên R
\(f\left(1\right)=-2< 0\)
\(f\left(-2\right)=13>0\)
\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)
\(f\left(2\right)=13>0\Rightarrow f\left(1\right).f\left(2\right)< 0\)
\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\)
\(\Rightarrow\) Phương trình đã cho luôn có ít nhất 2 nghiệm với mọi m
\(f\left(x\right)=\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3\) là hàm đa thức liên tục trên R. Do đó nó liên tục trên \(\left[-2;-1\right]\)
Ta có \(f\left(-1\right)=-1< 0\) và \(f\left(-2\right)=m^2+2>0\) nên \(f\left(-1\right)f\left(-2\right)< 0\) với mọi m.
Do đó, phương trình \(f\left(x\right)=0\) luôn có ít nhất một nghiệm trong khoảng (-2; -1) với mọi m. Nghĩa là, phương trình \(\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3=0\) luôn có nghiệm với mọi m.
Xét pt cho là pt bậc hai một ẩn $x$ ( Với $a=1 \neq 0, b=-2(m-1), c = m-3$ )
Ta có : \(\Delta'=b'^2-ac\)
\(=\left[-\left(m-1\right)\right]^2-\left(m-3\right)\cdot1\)
\(=m^2-2m+1-m+3\)
\(=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\)
Nên pt cho luôn có hai nghiệm phân biệt \(\forall m\)
x ≤ 0 ⇒ |x| = -x
Suy ra: x + |x| = x – x = 0
Vậy mọi x ≤ 0 đều là nghiệm của phương trình x + |x| = 0
a=-1; b=-2m^2-2m-2; c=m^2+m+1
A=a*c=-(m^2+m+1)
=-(m^2+m+1/4+3/4)
=-(m+1/2)^2-3/4<0
=>Phương trình luôn có hai nghiệm phân biệt
a, - Xét phương trình (1) có : \(\Delta^,=b^{,2}-ac\)
\(=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5\)
\(=m^2-4m+6=m^2-4m+4+2=\left(m-2\right)^2+2\)
- Thấy \(\Delta^,\ge2>0\) => ĐPCM .
b,Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(TH_1:x_1=0\Rightarrow m=\dfrac{5}{2}\)
- Thay m và x1 vào một PT ta được : x2 = -3 ( L )
=> Không tồn tại x1 = 0 để nghiệm còn lại lớn hơn 0 .
\(TH_2:x_1< 0< x_2\)
\(\Leftrightarrow ac< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
Vậy ...
Nếu x \(\le0\) thì \(\left|x\right|=-x\)
\(\Rightarrow x+\left|x\right|=x-x=0\)
Vậy với mọi số \(x\le0\) đều nghiệm đúng phương trình .
Theo đề bài ta có:
x + |x| = 0 và x \(\le0\)
=> |x| = x; -x + x = 0 và x + x \(\ne\) 0 ngoại trừ x = 0.
Vậy với mọi x \(\le\) là nghiệm của phương trình x + |x| = 0.