Giúp mình bài này rồi mình like cho được không ? Mình đang cần gấp :
Chứng tỏ rằng : \(3^{2015}-35^{32}\)chia hết cho 2
Chứng minh rằng a + 2b chia hết cho 3 khi và chỉ khi b + 2a cũng chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có : 3a + 3b và a + 2b đều chia hết cho 3
=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3
=> 2a + b chia hết cho 3 ( đpcm )
Bài 2 :
Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp
hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1
2x + 3y chia hết cho 17
Vậy ...
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Ta có : 3a + 3b và a + 2b đều chia hết cho 3.
\(\Rightarrow\)( 3a + 3b ) - ( a + 2b ) chia hết cho 3.
\(\Rightarrow\)2a + b chia hết cho 3 ( đpcm )
Ta có : \(CM:\Rightarrow\)
\(\left(a+2b\right)+\left(b+2a\right)=3a+3b=3\left(a+b\right)⋮3\)
Mà \(\left(a+2b\right)⋮3\Rightarrow b+2a⋮3\)( 1 )
\(CM:\Leftarrow\)
\(\left(a+2b\right)+\left(b+2a\right)=3a+3b=3\left(a+b\right)⋮3\)
Mà \(b+2a⋮3\Rightarrow a+2b⋮3\)( 2 )
Từ ( 1 ) ; ( 2 ) \(\Rightarrow a+2b⋮3\Leftrightarrow b+2a⋮3\left(Đpcm\right)\)
Chúc bạn học tốt !!!
1.
32015 = 32012.33 = (34)503.27 = ...........1.27 = ..........7
3532 = (354)8 = ........5
=> 32015 - 3532 = ................7 - ....................5 = ..................2 chia hết cho 2