Cho hình thang ABCD. Biết hai đáy AB = a, CD = 2a, cạnh bên AD = a, \(\widehat{A}=90^0\)
a) Chứng minh tg C = 1
b) Tính tỉ số diện tích tam giác DBC và diện tích hình thang ABCD
c) Tính tỉ số diện tích tam giác ABC và diện tích tam giác DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hình thang ABCD có : \(\widehat{A}\) \(=\) \(\widehat{D}\) \(=\) \(90^0\)
Kẻ \(BH\perp CD\)
=> ABHD là hình chữ nhật \((\widehat{A}=\widehat{D}=\widehat{H}=90^0)\)
Có AB = AD = a
=> ABHD là hình vuông .
=> AB = AD = BH = DH = a
=> HC = DC - HD = 2a - a = a
\(\Delta BHC\) có \(\widehat{A}=90^0\)
\(\Rightarrow\) \(tanC=\frac{BH}{HC}=\frac{a}{a}=1\)
b) \(S_{ABCD}=\frac{\left(AB+CD\right)AD}{2}=\frac{3a^2}{2}\)
\(S_{DBC}=\frac{1}{2}BH.CD=\frac{1}{2}.a.2a=a^2\)
\(\frac{S_{DBC}}{S_{ABCD}}=\frac{a^2}{\frac{3a^2}{2}}=\frac{2}{3}\)
c) Kẻ \(KC\perp AB\)
=> AD = CK = a
\(S_{ABC}=\frac{1}{2}CK.AB=\frac{1}{2}a.a=\frac{a^2}{2}\)
\(\frac{S_{ABC}}{S_{DBC}}=\frac{\frac{a^2}{2}}{a^2}=\frac{1}{2}\)
a. Kẻ \(BH\perp CD\)
Ta có: AB // CD và góc A = 90o
Suy ra:góc D = 90o
Tứ giác ABHD có 3 góc vuông và AB = AD = a nên là hình vuông
Suy ra: DH = BH = AB = a
Ta có: CD = DH + HC
Suy ra: HC = CD – DH = 2a – a = a
Vậy \(tg\widehat{C}=\frac{BH}{CH}=aa=1\)
b)
Ta có :
\(S_{BCD}=\frac{1}{2}BH.CD=\frac{1}{2}a.2a=a^2\left(đvdt\right)\)
\(S_{ABCD}=\frac{AB+CD}{2}.AD=\frac{a+2a}{2}.a=\frac{3}{2}a^2\left(đvdt\right)\)
Vậy : \(\frac{S_{BCD}}{S_{ABCD}}=\frac{a^2}{\frac{3}{2}a^2}=\frac{1}{\frac{3}{2}}=\frac{2}{3}\)
c)
Ta có : \(S_{ABC}=\frac{1}{2}a.a=\frac{1}{2}a^2\left(đvdt\right)\)
Vậy : \(\frac{S_{ABC}}{S_{BCD}}=\frac{\frac{1}{2}a^2}{a^2}=\frac{1}{2}\)
a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta được AB/BC = DB/CD = AB/BD
hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5
==> BC= 3,5*5/2,5 = 7 (cm)
ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5
==> CD = 5*5/2,5 =10 (cm)
c) Từ (1) ta được;
AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)^2 = 1/4
a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta có AB/BC = DB/CD = AB/BD
hay AD/BC = AB/BD ⇔ 3,5/BC = 2,5/5
➩ BC= 3,5 . 5/2,5 = 7 (cm)
ta lại có: DB/CD = AB/BD ⇔ 5/CD = 2,5/5
==> CD = 5.5/2,5 =10 (cm)
c) Từ (1) ta được:
AD/BC = DB/CD = AB/BD
hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng dạng với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)2 = 1/4
Tham khảo: