K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

14 cháu oaoa

20 tháng 3 2016

Làm trên này là fai có cáh giải nuk cháu ak, ghi kq chỉ tổ tốn côg

16 tháng 3 2016

BẠn chỉ mình vẽ bán kính trên hoc24.vn đi rồi mình giải cho

16 tháng 3 2016

bn có mát điện thoại ko, làm ở giấy xong up ảnh lên là đc

3 tháng 11 2018

Giải bài Lê Quý Đôn trên báo KQĐ kỳ 7:

Bài 2: 

A B C D M I H O 4

Gọi I là giao điểm của AC và BD

      O là tâm đường tròn ngoại tiếp \(\bigtriangleup BMD\)

      H là trung điểm của MD

Ta có: ABCD là hình vuông (GT)

mà AC cắt BD tại I (GT)

\(\to \bigg\{ \begin{matrix} I&là&trung&điểm&AC \\ I&là&trung&điểm&BD \\ AC&\perp&BD&tại&I \\ \end{matrix} \) 

Ta có: (O) ngoại tiếp \(\bigtriangleup BMD\) (GT)

mà I là trung điểm của BD (GT)

\(\to \begin{matrix} OI&là&đường&trung&trực&của& \bigtriangleup BMD \\ \end{matrix}\)

\(\to \begin{matrix} OI \perp BD&tại&I \\ \end{matrix} \)

mà \(\begin{matrix} AI \perp BD&tại&I&(AC \perp BD&tại&I) \\ \end{matrix}\) 

\(\to OI \equiv AI\) \(\to \begin{matrix} A,&O,&I&thẳng&hàng \\ \end{matrix}\)

Xét \(\bigtriangleup ADC\), ta có: \(\bigg\{ \begin{matrix} I&là&trung&điểm&AC&(cmt) \\ M&là&trung&điểm&CD&(GT) \end{matrix}\)

\(\to \begin{matrix} IM&là&đường&trung&bình&của&\bigtriangleup ADC \\ \end{matrix}\)

\(\to IM//AD\) \(\to \begin{matrix} AIMD&là&hình&thang \end{matrix}\)

Ta có: \(\bigtriangleup OMD\) cân tại O (OM=OD do OM và OD là bán kính của (O))

mà OH là đường trung tuyến (H là trung điểm MD)

\(\to \begin{matrix} OH&là&đường&cao&của&\bigtriangleup OMD \end{matrix}\)

\(\to \begin{matrix} OH \perp MD&tại&H \\ \end{matrix}\)

mà \(\begin{matrix} AD \perp MD&tại&D&(ABCD&là&hình&vuông) \end{matrix}\)

      \(\begin{matrix} AD//IM&(cmt) \end{matrix}\)

\(\to IM//OH//AD\)

Ta có: \(\bigtriangleup ABD\) vuông tại A (GT)

\(\to\) BD2= AB+ AD2 (Định lý Pythagore)

\(\to\) BD2= 2AB2 = 2 x 42 (AB=AD do ABCD là hình vuông)

\(\to\) BD2= 32 \(\to BD = 4 \sqrt2 \) 

 \(\to AI=IB=\frac{BD}{2}=\frac{4\sqrt2}{2}=2\sqrt2\) 

Xét hình thang AIMD, ta có: \(\bigg\{ \begin{matrix} H&trung&điểm&MD&(GT) \\ OH//&IM//&AD&(cmt) \end{matrix}\)

\(\to\) O trung điểm AI

\(\to OI=\frac{AI}{2}=\frac{2\sqrt2}{2}=\sqrt2\)

Ta có: \(\bigtriangleup OBI\) vuông tại I (\(AC\perp BD\) tại I; \(O\in AC\)\(I\in AC\)\(I\in BD\))

\(\to\) OB2= OI2 + IB2 (Định lý Pythagore) \(\to\) OB2= (\(\sqrt2 \))2 +(\(2\sqrt2\))2 = 2 + 8 = 10

\(\to OB=\sqrt{10}\)

3 tháng 11 2018
Hmm..sao mất chữ rồi nhỉ..
21 tháng 2 2019

Chọn đáp án C.

Gọi O là tâm của hình vuông ABCD

Khi đó, bán kính đường tròn ngoại tiếp hình vuông ABCD là R = OA

Áp dụng đinh lí Pytago vào tam giác vuông ABC ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

1 tháng 5 2018

B A D C O M E

a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

=> Tứ giác ABCD là hình vuông

+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:

=> \(AB^2=OA^2+OB^2=2R^2\)

Khi đó diện tích tứ giác ABCD:

\(S=AB^2=2R^2\)

b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)

Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC

Theo Pytago thuận ta có:

\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)

\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)

c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC

Tương tự, ta có OAE=OEA

=> OEA=MCA

=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)

24 tháng 1 2017

Đáp án đúng : C

11 tháng 6 2017