Tam giác ABC vuông góc tại C có AC = 15cm. Đường cao CH chia AB thành hai đoạn AH và HB. Biết HB = 16cm. Tính diện tích tam giác ABC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt AH = x ( x > 0 ) , ta có :
\(AC^2=AH.AB\)
\(\Leftrightarrow15^2=x\left(x+16\right)\)
\(\Leftrightarrow x^2+16x-225=0\)
Giải phương trình , ta được : \(x_1=9\)
\(x_2=-25\)( loại )
Vậy AH = 9 , suy ra :
\(CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-9^2}=12\)
=> Diện tích tam giác ABC là :
\(S_{ABC}=\frac{1}{2}AB.CH=\frac{1}{2}\left(9+16\right).12=150\left(cm^{^2}\right)\)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Gọi D là giao điểm của AC và đường vuông góc với BC tại E.
Xét ΔAHC và ΔABC có C chung và A H C ^ = B A C ^ = 90 ∘ nên ΔAHC ~ ΔBAC (g-g)
Ta có S D E C = 1 2 S A B C (1), S A H C : S A B C = H C B C = 9 9 + 3 , 5 = 18 25 2
Từ (1) và (2) suy ra S D E C : S A H C = 1 2 : 18 25 = 25 36 = ( 5 6 ) 2 ( 3 )
Vì DE // AH (cùng vuông với BC) duy ra ΔDEC ~ ΔAHC nên
S D E C : S A H C = ( E C H C ) 2 ( 4 )
Từ (3) và (4) suy ra E C H C = 5 6 tức là E C 9 = 5 6 => EC = 7,5cm.
Đáp án: D
Gọi D là giao điểm của AC và đường vuông góc với BC tại E.
Xét ΔAHC và ΔABC có C chung và A H C ^ = B A C ^ = 90 ∘ nên ΔAHC ~ ΔBAC (g-g)
Ta có S D E C = 1 2 S A B C (1), S A H C : S A B C = 18 25 (2).
Từ (1) và (2) suy ra
S D E C : S A H C = 1 2 : 18 25 = 25 36 = ( 5 6 ) 2 3
Vì DE // AH (cùng vuông với BC) duy ra ΔDEC ~ ΔAHC nên
S D E C : S A H C = ( E C H C ) 2 (4)
Từ (3) và (4) suy ra E C H C = 5 6 tức là E C 18 = 5 6 => EC = 15cm.
Đáp án: A
Đặt BC=x \(\Rightarrow\)BH=x-16
\(\Rightarrow\)AB2=x(x-16) \(\Leftrightarrow\)152=x(x-16) \(\Leftrightarrow\)x=25
\(\Rightarrow\)BC=25(cm),BH=25-16=9(cm)
AC=\(\sqrt{BC^2-AB^2}\)=20(cm)
AH=\(\sqrt{BH.HC}\)=12(cm
Đặt AH = x (x > 0)
Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có: AC2 = AB.AH
hay 152 = (x + 16)x ⇔ x2 + 16x -225 = 0
Giải phương trình, ta được x1 = 9 (thỏa mãn); x2 = -25 (loại)
Vậy AH = 9 (cm)
Ta có: HC2 = AH. HB = 9. 16 = 144
⇒ HC = 12 (cm)
Vậy diện tích tam gaics ABC là:
S=12AB.CH=12.25.12=150(cm2)