K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

\(\dfrac{6}{\sqrt{7}-1}\)=\(\dfrac{6\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\)=\(\dfrac{6\left(\sqrt{7}+1\right)}{6}=\sqrt{7}+1\)

vậy đáp án (D) đúng.

11 tháng 8 2017

\(\dfrac{6}{\sqrt{7}-1}=\dfrac{6\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}=\dfrac{6\left(\sqrt{7}+1\right)}{6}=\sqrt{7}+1\)

\(Vậy\) \(đáp\) \(án\) \(đúng\) \(là\) \(D.\)

18 tháng 10 2021

sinx nằm trong khoảng (-1,1) vậy GTLN làD

7 tháng 7 2021

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)

\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)

Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)

 

24 tháng 8 2021

a.ĐKXĐ: \(x\ge0\)
 \(\sqrt{2x}< \dfrac{1}{3}\) \(\Leftrightarrow2x< \dfrac{1}{3}\Leftrightarrow6x< 1\Leftrightarrow x< \dfrac{1}{6}\)

b. ĐKXĐ: \(x\ge\dfrac{1}{6}\)

\(\sqrt{-3x+\dfrac{1}{2}}\ge5\Leftrightarrow-3x+\dfrac{1}{2}\ge25\Leftrightarrow x=-\dfrac{49}{6}\) 

c. ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{-2x+1}>7\) \(\Leftrightarrow-2x+1>49\Leftrightarrow x=-24\)

d. ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{2x-1}\le\dfrac{3}{2}\Leftrightarrow2x-1\le\dfrac{9}{4}\Leftrightarrow x=\dfrac{13}{8}\)

 

a: Ta có: \(\sqrt{2x}< \dfrac{1}{3}\)

\(\Leftrightarrow2x< \dfrac{1}{9}\)

\(\Leftrightarrow x< \dfrac{1}{18}\)

Kết hợp ĐKXĐ, ta được: \(0\le x< \dfrac{1}{18}\)

b: Ta có: \(\sqrt{-3x+\dfrac{1}{2}}\ge5\)

\(\Leftrightarrow-3x+\dfrac{1}{2}\ge25\)

\(\Leftrightarrow-3x\ge\dfrac{49}{2}\)

hay \(x\le-\dfrac{49}{6}\)

c: Ta có: \(\sqrt{-2x+1}>7\)

\(\Leftrightarrow-2x+1>49\)

\(\Leftrightarrow-2x>48\)

hay x<-24

 

25 tháng 5 2023

\(a,\) Rút gọn 

\(A=\dfrac{3}{\sqrt{7}-2}+\sqrt{\left(\sqrt{7}-3\right)^2}\)

\(=\dfrac{3}{\sqrt{7}-2}+\left|\sqrt{7}-3\right|\)

\(=\dfrac{3}{\sqrt{7}-2}+3-\sqrt{7}\)

\(=\dfrac{3+\left(3-\sqrt{7}\right)\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)

\(=\dfrac{3+3\sqrt{7}-6-7+2\sqrt{7}}{\sqrt{7}-2}\)

\(=\dfrac{5\sqrt{7}-10}{\sqrt{7}-2}\)

\(=\dfrac{5\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)

\(=5\)

Vậy \(A=5\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x-1}{\sqrt{x}+1}\right)\)

\(=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}}{x-\sqrt{x}}.\left(\sqrt{x}-1\right)\)

\(=\sqrt{x}-1\)

Vậy \(B=\sqrt{x}-1\)

\(b,\) Để \(B< A\) thì \(\sqrt{x}-1< 5\)

\(\Leftrightarrow\sqrt{x}< 6\)

\(\Leftrightarrow x< 36\)

26 tháng 7 2018

\(1.\text{ }\dfrac{1}{\sqrt{k}-\sqrt{k+1}}=\dfrac{\left(\sqrt{k}+\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}\\ =-\left(\sqrt{k}+\sqrt{k+1}\right)\\ \Rightarrow\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{8}-\sqrt{9}}\\ =-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{8}+\sqrt{9}\right)\\ =-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{8}+\sqrt{9}\\ \\ =\sqrt{9}-\sqrt{1}=2\)

\(2.\text{ }\dfrac{1}{\left(k+1\right)\sqrt{k}+\sqrt{k+1}k}=\dfrac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\\ =\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\\ \Rightarrow\text{ }\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{7}}\\ \text{ }1-\dfrac{1}{\sqrt{7}}\)

26 tháng 7 2018

1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}=\dfrac{1+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+\dfrac{\sqrt{5}+\sqrt{6}}{5-6}-\dfrac{\sqrt{6}+\sqrt{7}}{6-7}+\dfrac{\sqrt{7}+\sqrt{8}}{7-8}-\dfrac{\sqrt{8}+\sqrt{9}}{8-9}=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}+\sqrt{7}-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}=\sqrt{9}-1=3-1=2\)

8 tháng 2 2022

Câu A

27 tháng 6 2019

Chọn đáp án D