Tìm các giá trị nguyên của \(x\) để phân thức M có giá trị là một số nguyên :
\(M=\dfrac{10x^2-7x-5}{2x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`M=(10x^2-7x-5)/(2x-3)(x ne 3/2)`
`=(10x^2-15x+8x-12+7)/(2x-3)`
`=(5x(2x-3)+4(2x-3)+7)/(2x-3)`
`=5x+4+7/(2x-3)`
Để `M in ZZ`
`=>7/(2x-3) in ZZ`
`=>2x-3 in Ư(7)={+-1,+-7}`
`=>2x in {2,4,-4,10}`
`=>x in {1,2,-2,5}(tm)`
Vậy `x in {1,2,-2,5}` thì `M in ZZ`.
\(\text{Để }\frac{10x^2-7x-5}{2x-3}nguyên\Rightarrow\left(10x^2-7x-5\right)⋮\left(2x-3\right)\)
\(\text{Ta có }10x^2-7x-5=10x^2-7x-12+7=\left(2x-3\right)\left(5x+4\right)+7\)\(Mà\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)\Rightarrow7⋮\left(2x-3\right)\)
\(\Rightarrow\left(2x-3\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
2x-3 | -7 | -1 | 1 | 7 |
x | -2 | 1 | 2 | 5 |
\(\text{Vậy x }\in\left\{-2;1;2;5\right\}\)
\(M=\frac{10x^2-15x+8x-12+7}{2x-3}=\frac{\left(2x-3\right)\left(5x+4\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)
=> M nguyên <=> 5x+4 nguyên và 7/2x-3 nguyên <=> x nguyên và 2x-3 thuộc Ư(7) <=> 2x-3 thuộc (+-1; +-7)
2x-3 | 1 | -1 | 7 | -7 |
x | 2(t/m đk) | 1(t/m đk) | 5(t/mđk) | -2(t/m đk) |
=> M nguyên <=> x thuộc (-2;1;2;5)
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
+ 2x – 3 = 1 ⇔ 2x = 4 ⇔ x = 2.
+ 2x – 3 = -1 ⇔ 2x = 2 ⇔ x = 1.
+ 2x – 3 = 7 ⇔ 2x = 10 ⇔ x = 5
+ 2x – 3 = -7 ⇔ 2x = -4 ⇔ x = -2.
Vậy với x ∈ {-2; 1; 2; 5} thì giá trị biểu thức M là một số nguyên.
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
Biến đổi M về dạng \(M=f\left(x\right)+\dfrac{n}{2x-3}\) như sau:
Cách 1: chia đa thức \(10x^2-7x-5\) cho \(2x-3\) ta được thương là \(5x+4\) dư là 7. Vậy:
\(M=5x+4+\dfrac{7}{2x-3}\)
Cách 2: Biến đổi M như sau:
\(M=\dfrac{10x^2-7x-5}{2x-3}=\dfrac{10x^2-15x+8x-12+7}{2x-3}\)
\(=\dfrac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}\)
\(=5x+4+\dfrac{7}{2x-3}\)
Sau đó các bước tiếp theo làm như bạn Nhật Linh.