K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

ko xài pc dc k ?

23 tháng 4 2017

nhưng cô tôi bảo dùng phản chứng bạn ạ :)

20 tháng 8 2016

Đặt \(a=3+x\) , \(b=3+y\) (\(x,y\ge0\)) thì \(a+b=\left(x+y\right)+6\)

Ta có : \(a^2+b^2\ge25\Leftrightarrow\left(3+x\right)^2+\left(3+y\right)^2\ge25\Leftrightarrow x^2+y^2+6\left(x+y\right)+18\ge25\)

Ta sẽ chứng minh \(x+y\ge1\) . Thật vậy , giả sử \(0\le x+y< 1\)

\(\Rightarrow x^2+2xy+y^2< 1\Rightarrow x^2+y^2< 1\)

Do đó : \(a^2+b^2=\left(x^2+y^2\right)+6\left(x+y\right)+18< 1+6+18=25\) trái với giả thiết.

Vậy \(x+y\ge1\) \(\Rightarrow a+b\ge7\) (đpcm)

 

8 tháng 9 2019

Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d=1/a+1/b+1/c+/1d. chứng minh rằng tồn tại tích hai số trong 4 số bằng 

2 tháng 1 2018

Ta có:

\(21b+\frac{3}{a}=\frac{3}{a}+\frac{a}{3}+\frac{62a}{3}\ge2\sqrt{\frac{3}{a}.\frac{a}{3}}+\frac{62.3}{3}=2+62=64\left(a\ge3\right)\left(1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{a}=\frac{a}{3}\)và  \(a=3\Leftrightarrow a=3\)

\(\frac{21}{b}+3b=\frac{21}{b}+\frac{7b}{3}+\frac{2b}{3}\ge2\sqrt{\frac{21}{b}.\frac{7b}{3}}+\frac{2.3}{3}=14+2=16\left(b\ge3\right)\left(2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{21}{b}=\frac{7b}{3}\)và  \(b=3\Leftrightarrow b=3\)

Từ (1) và (2) suy ra điều cần chứng minh.

Dấu "=" xảy ra \(\Leftrightarrow a=b=3\)

18 tháng 7 2017

giả sử \(a+b< 7\Leftrightarrow a< 7-b\)

có: \(\left(7-b\right)^2+b^2>a^2+b^2\ge25\)

\(\Leftrightarrow b^2-7b+12>0\Leftrightarrow\left(b-3\right)\left(b-4\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}b< 3\\b>4\end{matrix}\right.\)

trường hợp b<3 hiển nhiên trái với giả thiết.

ta xét b > 4.

Lại có: \(a+4< a+b< 7\)( điều giả sử)

\(\Leftrightarrow a< 3\)( vô lý )

Vậy điều giả sử sai , ngược lại \(a+b\ge7\) đúng

18 tháng 7 2017

Đoạn \(\left(7-b\right)^2+b^2>a^2+b^2\ge25\Leftrightarrow b^2-7b+12>0\) làm sao ra đc vậy?

17 tháng 7 2021

\(\)\(=>a^5+b^5+c^5-3\ge0\)

\(< =>a^5+b^5+c^5-\left(a^3+b^3+c^3\right)\ge0\)

\(>=>a^2.a^3-a^3+b^2.b^3-b^3+c^2.c^3-c^3\ge0\)

\(< =>a^2\left(a^3-1\right)+b^2\left(b^3-1\right)+c^2\left(c^3-1\right)\ge0\)(luôn đúng)

vì \(a^2\left(a^3-1\right)\ge0;b^2\left(b^3-1\right)\ge0;c^2\left(c^3-1\right)\ge0\)

Vậy \(Vt\ge3\)(đpcm)

 

\(\)

\(\)

17 tháng 7 2021

Sửa đề: \(a^3+b^3+c^3=3\) 

áp dụng đẳng thức AM - GM cho 7 số :3 số \(a^7,3\) số \(b^7\) và số 1,ta có

\(3a^7+3b^7+1\ge7^7\sqrt{a^{21}.b^{21}1}=7a^7b^7\left(1\right)\)

tương tự

\(3a^7+3b^7+1\ge7b^3c^3\left(2\right)\);\(3c^7+3a^7+1\ge7c^3a^3\left(3\right)\)

công thức về các bất đẳng thức (1);(2);(3) ta được

\(6\left(a^7+b^7+c^7\right)+3\ge7\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(\Leftrightarrow6\left(a^7+b^7+c^7\right)+3\ge7.3\)

\(\Leftrightarrow a^7+b^7+c^7\ge3\left(đpcm\right)\)