K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2  và z < x < y

ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH

TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4

TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3

TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2

nhớ cho mik nha 

21 tháng 7 2018

Ta có:

\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)

\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)

Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)

Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)

Với \(z-5=0\)\(\Rightarrow.....\)

B tự làm nốt nhé

27 tháng 5 2017

\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)

\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)

8 tháng 8 2019

\(S=\frac{yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

+ \(yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)\)

\(=yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left[\left(y-z\right)+\left(x-y\right)\right]\)

\(+xy\left(z+1\right)\left(x-y\right)\)

\(=\left(y-z\right)\left[yz\left(x+1\right)-zx\left(y+1\right)\right]+\left(x-y\right)\left[xy\left(z+1\right)-zx\left(y+1\right)\right]\)

\(=\left(y-z\right)\left[z\left(y-x\right)\right]+\left(x-y\right)\cdot x\cdot\left(y-z\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

\(\Rightarrow S=\frac{1}{xyz}\)

2 tháng 4 2018

Ta có : 

\(x-y-z=0\)

\(\Rightarrow\)\(x-z=y\) \(\left(1\right)\)

\(\Rightarrow\)\(y-x=-z\) \(\left(2\right)\)

\(\Rightarrow\)\(z+y=x\) \(\left(3\right)\)

Lại có : 

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay (1), (2) và (3) vào \(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\) ta được : 

\(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=\frac{xy\left(-z\right)}{xyz}=\frac{\left(-1\right)xyz}{xyz}=-1\)

Vậy \(B=-1\)

Chúc bạn học tốt ~ 

2 tháng 4 2018

Nhanh giùm nha Mình cần gấp

4 tháng 9 2017

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).

Vậy  \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)

5 tháng 9 2017

thank Gia Hy

23 tháng 8 2019

mong mọi người nhanh giúp