chứng tỏ rằng lấy 1 số có 2 chữ số + với số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn luôn duoc 1 so chia het cho so 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo link này nha :
https://olm.vn/hoi-dap/detail/8666721638.html
~Study well~
#KSJ
#Mk sẽ gửi link cho bn!
Trả lời
Các số đó có dạng ab, ta có:
ab+ba=a.10+b+b.10+a=(a.10+a)+(b.10+b)
Vì a.11 chia hết cho 11,b.11 chia hết cho 11
=>a.11+b.11 chia hết cho 11
Vậy lấy 1 số có 2 chữ số cộng với một số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11.
Học tốt nha!
Các số đó có dạng ab, ta có :
ab+ba=a*10+b+b*10+a=(a*10+a)+(b*10+b)=a*11+b*11
Vì a*11chia hết cho 11; b*11 chia hết cho 11
=> a*11+b*11 chia hết cho 11
Vậy lấy 1 số có 2 chữ số rồi cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11
E = 9(x + 5)2 – (x + 7)2
= [3(x + 5)]2 – (x + 7)2
= [3(x+5) + x +7][3(x+5) – (x+7)]
= (4x + 22)(2x + 8)
= 4(2x + 11)(x + 4)
E = 9(x + 5)2 – (x + 7)2
= [3(x + 5)]2 – (x + 7)2
= [3(x+5) + x +7][3(x+5) – (x+7)]
= (4x + 22)(2x + 8)
= 4(2x + 11)(x + 4)
Ta có : \(\overline{ab}+\overline{ba}=(10\cdot a+b)+(10\cdot b+a)=11\cdot a+11\cdot b⋮11\)
Gọi số tự nhiên có hai chữ số là ab(a ≠0)
Số viết theo thứ tự ngược lại của ab là ba
Ta có: ab = 10a + b ; ba = 10b + a
Do đó: ab+ ba= (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)
Vì 11.(a + b) ⋮ 11 nên ab + ba luôn chia hết cho 11
Các số đó có dạng ab ta có:
ab + ba = a.10 +b + b.10+ a= ( a.10+a) + (b.10+b)= a.11+b.11
Vì a.11 chia hết cho 11; b.11 cũng chia hết cho 11
=> a.11 + b.11 chia hất cho 11
Vậy lấy 1 số có 2 chữ số cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11
Gọi số cần tìm là ab (a khác 0, a và b là chữ số) Số viết theo thứ tự ngược lại của ab là ba
Ta có:
ab + ba = 10a + b +10b + a
=11a + 11b
=11. (a+b) chia hết cho 11
Vậy 1 số có 2 chữ số cộng với số có 2 chữ số ấy viết theo thứ tự ngược lại thì ta luôn được 1 số chia hết cho 11
Gọi số có hai chữ số đó là \(\overline{ab}\left(0\le b\le a;a\ne0\right)\)
Ta có : \(\overline{ab}+\overline{ba}=\left(10a+b\right)+\left(10b+a\right)\)
\(=10a+10b+a+b=10\left(a+b\right)+\left(a+b\right)\)
\(=\left(a+b\right)\left(10+1\right)=\left(a+b\right).11⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\)
Vậy \(\overline{ab}+\overline{ba}⋮11\)
Gọi số có hai chữ số đó có dạng \(\overline{ab}\left(0< b< a;a\ne0\right)\)
Ta có \(\overline{ab}+\overline{ba}=\left(10a+b\right)+\left(10b+a\right)\)
\(=10a+10b+a+b=10\left(a+b\right)+\left(a+b\right)\)
\(=\left(a+b\right)+\left(10+1\right)\)
\(=\left(a+b\right).11⋮11\)
\(=>\overline{ab}+\overline{ba}⋮11\)
Vậy \(\overline{ab}+\overline{ba}⋮11\left(dpcm\right)\)
Các số đó có dạng ab, ta có :
ab+ba=a*10+b+b*10+a=(a*10+a)+(b*10+b)=a*11+b*11
Vì a*11 chia hết cho 11; b*11 chia hết cho 11
=> a*11+b*11 chia hết cho 11
Vậy lấy 1 số có 2 chữ số rồi cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11