K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2020

giúp mình câu c, thanks

NV
30 tháng 3 2021

\(\left\{{}\begin{matrix}AE||DC\\CD\perp BD\end{matrix}\right.\) \(\Rightarrow AE\perp BD\) \(\Rightarrow\Delta AIE\) vuông tại E

Tương tự ta có \(DF\perp AC\Rightarrow\Delta DIF\) vuông tại F

\(\Rightarrow\) Hai tam giác vuông AIE và DIF đồng dạng ( \(\widehat{AIE}=\widehat{DIF}\) đối đỉnh)

\(\Rightarrow\dfrac{IE}{IF}=\dfrac{IA}{ID}\) (1)

Mà \(\widehat{EIF}=\widehat{AID}\) (đối đỉnh)

(1); (2) \(\Rightarrow\Delta EIF\sim\Delta AID\) (c.g.c)

\(\Rightarrow\widehat{EFI}=\widehat{ADI}\) hay \(\widehat{EFI}=\widehat{ADB}\)

Lại có \(\widehat{ADB}=\widehat{ACB}\) theo chứng minh câu b

\(\Rightarrow\widehat{EFI}=\widehat{ACB}\Rightarrow EF||BC\) (hai góc đồng vị bằng nhau)

undefined

NV
30 tháng 3 2021

Điểm D là điểm nào em nhỉ?

AE//DC thì điểm E nằm ở đoạn thẳng nào? DF//AB thì điểm F nằm ở đoạn thẳng nào?

30 tháng 3 2021

Mình làm cả a và b nữa nhé , nếu bạn thấy cần thiết 

undefined

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABHb, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHAc, tia BI cắt AC ở E . chứng minh  tam giác ABE đều d, chứng minh  DC >DB2 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở Ka, BIẾT AC = 8cm AB=6cm ....
Đọc tiếp

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

2

 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở K

a, BIẾT AC = 8cm AB=6cm . TÍNH BC 

b, TAM GIÁC ABK LÀ TAM GIÁC GÌ

c, CHỨNG MINH DK VUÔNG BC .

d, KẺ AE VUÔNG BC. CHỨNG MINH AK LÀ TIA PHÂN GIÁC  CỦA GÓC HAC

3

 CHO TAM ABC CÓ AB=3cm AC=4cm BC=5cm

a, TAM GIÁC ABC LÀ TAM GIÁC GÌ

b, VẼ BD LÀ PHÂN GIÁC CỦA GÓC B. TRÊN CẠNH BC LẤY DIỂM ED TẠI F. CHỨNG MINH AE SONG SONG FC

c, CHỨNG MINH TAM GIÁC ABH = TAM GIÁC ACH


b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

 

GIÚP MIK LÀM 3 BÀI NÀY NHA MÌNH CẢM ƠN

0
5 tháng 4 2016

a)

ta có : AB<AC

suy ra ACB<ABC

ABH=90-60=30

b)

DAC=DAB=90-(A/2)=90-30=60

ABI=90-30=60

xét 2 tam giác vuông AIB và BHA có

AB(chung)

ta có:

BAH=ABD=60(cmt)

suy ra AIB=BHA(CH-GN)

c)

theo câu a, ta có tam giác AIB=BHA(CH-GN)

suy ra ABI=BAC=60 độ

BEA=180-60-60=60 độ

ta có: ABE=BEA=EAB=60 suy ra tam giác ABE đều

5 tháng 4 2016

a,Ta có :

AB<AC (gt)

=> C<B

=> góc ABC < góc ACB

Tính góc ABH

Ta có : A+H+B=180 ( tổng 3 góc trong 1 tam giác )

60+90+B=180 ( góc H =90 vì vuông góc )

150+B=180

B=180-150

B=30

=>ABH=30

b,Xét 2 tg AIB= tg BHA vuông tại I và H

Có : I là góc chung

=> tg AIB= tg BHA(gcg)

c,ko bt lm 

d,ko bt luôn

28 tháng 6 2019

A B C D E F I 1 2 1

Cm: a) Xét t/giác ADB và t/giác EDB

có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)

      BD : chung

    \(\widehat{B_1}=\widehat{B_2}\)(gt)

=> t/giác ADB = t/giác EDB (ch - gn)

=> AB = BE ; AD = ED (các cặp cạnh t/ứng)

+) AD = ED => D thuộc đường trung trực của AE

+) AB = BE => B thuộc đường trung trực của AE

mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE 

b) Xét t/giác ADF và t/giác EDC

có:  \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)

       AD = DE (cmt)

   \(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

=> t/giác ADF = t/giác EDC (g.c.g)

=> DF = DC (2 cạnh t/ứng)

c) Ta có: AD < DF (cgv < ch)

Mà DF = DC (cmt)

=> AD < DC 

d) Xét t/giác ABC có AB > AC 

=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)

=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)

hay \(\widehat{ICB}>\widehat{B_2}\)

=> BI > IC (quan hệ giữa góc và cạnh đối diện)

a) Xét tam giác vuông BED và tam giác vuông BAD ta có :

ABD = EBD ( BD là pg ABC )

BD chung

=> Tam giác BED = tam giác BAD ( ch-gn)

=  >AD = DE( tg ứng)

b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :

AD = DE (cmt)

ADF = EDC ( đối đỉnh)

=> Tam giác AFD = tam giác EDC ( cgv-gn)

=> DF = DC (dpcm)

c) Xét tam giác vuông DEC có 

DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)

Mà AD = DE (cmt)

=> AD < DC

d) chịu