Cho hai phân thức :
\(\dfrac{1}{x^2+3x-10},\dfrac{x}{x^2+7x+10}\)
Không dùng cách phân tích các mẫu thức thành nhân tử, hãy chứng tỏ rằng có thể quy đồng mẫu thức hai phân thức này với mẫu thức chung là :
\(x^3+5x^2-4x-20\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: M = ( a 2 – a – 2)(a + 2) = ( a 2 + 3a + 2)(a – 2).
Do đó, ta có thể quy đồng mẫu thức của hai phân thứ này với mẫu thức chung là M = a 3 + a 2 – 4a – 4.
Lời giải:
Ta có: \(\frac{2}{2x^2+7x-15}=\frac{2}{x(2x-3)+5(2x-3)}=\frac{2}{(2x-3)(x+5)}\)
\(\frac{x}{x^2+3x-10}=\frac{x}{x^2+5x-2x-10}=\frac{x}{x(x+5)-2(x+5)}=\frac{x}{(x-2)(x+5)}\)
Do đó khi quy đồng thì mẫu thức chung của 2 phân số này là:
\((x+5)(2x-3)(x-2)=2x^3+3x^2-29x+30\)
Ta có đpcm.
Ta có:
Suy ra: x 3 - 7 x 2 + 7 x + 15 = x 2 - 4 x - 5 x - 3
Lại có:
Suy ra: x 3 - 7 x 2 + 7 x + 15 = x 2 - 2 x - 3 x - 5
Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2
Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2
Do đó , ta có :
\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)
Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)
Bài 2 . a) Ta có :
\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)
\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)
\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)
b) Ta có MTC = x2( y - z)2
Ta có :
\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)
\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )
\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)
Tại sao lại là x+2 và x-2