K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

A = 1.2. + 2.3 + 3.4 + ... + 99.100

3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 2.3.1 + ... + 99.100.101 - 99.100.98

3A = 99.100.101

3A = 999900

A = 333300

28 tháng 9 2015

lấy nick khác hả không qua được mắt tui đâu đồ bất công

18 tháng 10 2015

bạn đăng ít thôi dc ko vậy

13 tháng 11 2016

Bài của bạn giống bài của mình thật!

11 tháng 9 2021

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+90.100\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3A=99.100.101\)

\(\Rightarrow A=\left(99.100.101\right):3\)

\(\Rightarrow A=333300\)

11 tháng 9 2021

\(B=1.3+2.4+3.5+...+99.101\)

\(\Rightarrow B=1\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+99\left(100+1\right)\)

\(\Rightarrow B=1.2+1+2.3+2+3.4+3+...+99.100+99\)

\(\Rightarrow B=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99\right)\)

\(\Rightarrow B=333300+4950\)

\(\Rightarrow B=338250\)

Bài 5:

a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)

\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)

\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)

hay A=330

Vậy: A=330

8 tháng 9 2016

a) \(A=2.4+4.6+6.8+...+18.20\)

\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)

\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)

\(6A=18.20.22\)

\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)

8 tháng 9 2016

d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100

=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101

=> 3A = 99.100.101

=> A = 99.100.101 / 3

=> A = 333300 

10 tháng 12 2016

Bài 1 : Ta có : a = 1.2 + 2.3 + 3.4 + ....... + 99.100

=> 3a = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...... + 99.100.(101 - 98)

=> 3a = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 99.100.101

=> 3a = 99.100.101

=>   a = \(\frac{99.100.101}{3}=333300\) 

17 tháng 12 2015

lấy 1 chia cho các tổng rồi áp dụng công thức là ra