K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

b: Xét tứ giác AMCI có

AM//CI

AI//MC

Do đó: AMCI là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCI là hình chữ nhật

Suy ra: AC=MI

c: Ta có: AMCI là hình chữ nhật

nên AI=MC

mà MC=MB

nên AI=MB

Xét tứ giác ABMI có

AI//MB

AI=MB

Do đó: ABMI là hình bình hành

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

b: Xét tứ giác AMCI có 

AI//MC

AM//CI

Do đó: AMCI là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCI là hình chữ nhật

hay AC=MI

c: Ta có: AICM là hình chữ nhật

nên AI=MC

mà MB=MC

nên AI=MB

Xét tứ giác AIMB có 

AI//MB

AI=MB

Do đó: AIMB là hình bình hành

13 tháng 3 2023

giúp em với ạ e đg cần gấp ạ e c.ơn❤️

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
24 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của BC

I là trung điểm của AC

Do đó: MI là đường trung bình của ΔABC

Suy ra: MI//AB 

hay MI\(\perp\)AC

Xét ΔCIM vuông tại I và ΔAID vuông tại I có 

IC=IA

\(\widehat{ICM}=\widehat{IAD}\)

Do đó: ΔCIM=ΔAID

Suy ra: IM=ID

hay I là trung điểm của MD

Xét tứ giác AMCD có

I là trung điểm của MD

I là trung điểm của AC

Do đó: AMCD là hình bình hành

mà MD\(\perp\)AC

nên AMCD là hình thoi

27 tháng 8 2017

Dễ z sao đăng bn ơi

D

27 tháng 8 2017

mk............................không biết làm bye bye bn 

4 tháng 1 2018

Bạn tự vẽ hình nha

a, Ta có:

BM=MC, AM=MD nên tứ giác ABDC là hình bình hành

Mà BAC=90 Vì vậy một hình bình hành có một góc vuông la hình chữ nhật

tứ giác ABDC là hình chữ nhật

b, Vì AM//EC,AE//MC nên tứ giác AECM là hình bình hành

Mà AD=BC có AM=1/2AD, MC=1/2BC nên AM=MC

hình bình hành có hai cạnh bên bằng nhau thì là hình thoi

vậy tứ giác AMCE là hình thoi

c, Để hình chữ nhật ABDC là hình vuông thì AB=AC

Vậy tam giác ABC phải là tam giác vuông cân tại A và khi đó góc B không thể bằng 60 độ