Thu gọn đa thức sau :
\(Q=x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)
\(A=\left(x^2+x^2+x^2\right)+\left(y^2-y^2+y^2\right)+\left(z^2+z^2-z^2\right)\)
\(A=3x^2+y^2+z^2\)
A = \(x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)
= \(\left(1+1+1\right)x^2+\left(1-1+1\right)y^2+\left(1+1-1\right)z^2\)
=\(3x^2+y^2+z^2\)
\(\left(x^2-x^2\right)-\left(y^2-y^2\right)+\left(z^2-z^2\right)+2015x=2015x.\)
Q = x2 + y2 + z2 + x2 - y2 + z2 + x2 + y2 - z2.
Q = (x2 + x2 + x2 ) + (y2 - y2 + y2) + (z2 + z2 - z2)
= 3x2 + y2 + z2.
Q = x2 + y2 + z2 + x2 - y2 + z2 + x2 + y2 - z2.
Q = (x2 + x2 + x2 ) + (y2 - y2 + y2) + (z2 + z2 - z2)
= 3x2 + y2 + z2.
M = ( x\(^3\) + x\(^3\) + x\(^3\) ) + ( y\(^3\) - y\(^3\) + y\(^3\) ) + ( z\(^3\) + z3 - z\(^3\) )
= 3x\(^3\) + y\(^3\) + z\(^3\)
Q = x2 + y2 + z2 + x2 - y2 + z2 + x2 + y2 - z2.
Q = (x2 + x2 + x2 ) + (y2 - y2 + y2) + (z2 + z2 - z2)
= 3x2 + y2 + z2.