Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M thuộc cạnh SB sao cho MB = 2MS. Lấy điểm E thuộc cạnh SA và điểm F thuộc cạnh SC sao cho SE = 2AE và SF = 2FC. Mặt phẳng (MNE) cắt AD tại I và cắt CD tại K. a) Dựng điểm I và K và tìm thiết diện của hình chóp cắt bởi (MNE). b) Tính tỉ số IA / ID và KC / KD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (P) là mặt phẳng qua M, song song DE và SC
Gọi O là giao điểm AC, BD \(\Rightarrow\) O là trung điểm AC
\(\Rightarrow\) OM là đường trung bình tam giác SAC
\(\Rightarrow OM||SC\Rightarrow O\in\left(P\right)\)
Trong mp (SBD), gọi F là trung điểm BE \(\Rightarrow OF\) là đường trung bình tam giác BDE
\(\Rightarrow OF||DE\Rightarrow F\in\left(P\right)\)
Trong mp (SBC), qua F kẻ đường thẳng song song SC cắt BC tại G
\(\Rightarrow G\in\left(P\right)\)
Trong mp (ABCD), nối GO kéo dài cắt AD tại H
\(\Rightarrow H\in\left(P\right)\)
\(\Rightarrow\) Thiết diện của (P) và chóp là tứ giác MFGH (và tứ giác này không có điều gì đặc biệt)