K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Giải bài 154 trang 64 SGK Toán 6 Tập 2 | Giải toán lớp 6

17 tháng 4 2017

Giải bài 154 trang 64 SGK Toán 6 Tập 2 | Giải toán lớp 6

27 tháng 4 2018

\(\dfrac{x}{3}\)< 0 => x = -2

\(\dfrac{x}{3}\)= 0 => x = 0

0 < \(\dfrac{x}{3}\) < 1 => x = 2

\(\dfrac{x}{3}\)= 1 => x = 3

1 < \(\dfrac{x}{3}\) ≤ 2 => x ∈ { 4; 5; 6}

Nhớ tick cho mik nha haha

NV
2 tháng 7 2021

a.

\(A=x^2+\dfrac{2021}{x}=x^2+\dfrac{2021}{2x}+\dfrac{2021}{2x}\ge3\sqrt[3]{\dfrac{2021^2}{4x^2}}=3\sqrt[3]{\dfrac{2021^2}{4}}\)

Dấu "=" xảy ra khi \(x=\sqrt[3]{\dfrac{2021}{3}}\)

b.

\(B=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

c.

\(C=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{\dfrac{16x^3}{x^3}}=8\)

\(A_{min}=8\) khi \(x=2\)

NV
2 tháng 7 2021

d.

\(D=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}.x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=2\)

e.

\(E=\dfrac{9\left(x-2\right)+18}{2-x}+\dfrac{2}{x}=2\left(\dfrac{1}{x}+\dfrac{9}{2-x}\right)-9\ge\dfrac{2.\left(1+3\right)^2}{x+2-x}-9=7\)

\(E_{min}=7\) khi \(x=\dfrac{1}{5}\)

f.

\(F=\dfrac{3}{1-x}+\dfrac{4}{x}\ge\dfrac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)

Dấu "=" xảy ra khi \(x=4-2\sqrt{3}\)

BT1:   a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)- \(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)+ \(\dfrac{3}{x}\)= \(\dfrac{x^2+2}{x^2-x}\)BT2: a) Cho a>b, chứng minh rằng 2a+1>2b-3b) Tìm x để giá trị của biểu thức 3x-1 ≤  giá trị biểu thức x+2c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x)...
Đọc tiếp

BT1:   

a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)\(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)\(\dfrac{3}{x}\)\(\dfrac{x^2+2}{x^2-x}\)

BT2: 

a) Cho a>b, chứng minh rằng 2a+1>2b-3

b) Tìm x để giá trị của biểu thức 3x-1 ≤  giá trị biểu thức x+2

c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)

2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x) ; \(\dfrac{x}{3}\)-\(\dfrac{x+1}{5}\)>1

BT3: Giải bài toán bằng cách lập phương trình

 1 ô tô đi từ A đến B với vận tốc 50km/h. Đến B, ô tô nghỉ lại 1h, sau đó quay trở về A với vận tốc 60km/h. Tổng thời gian đi và về(gồm thời gian nghỉ lại) là 6h30p. Tính quãng đường AB?

 Mng giúp mình với mai mình kiểm tra rồi ạ, mình cảm ơn

0

a) ĐKXĐ: \(x\ne1\)

Ta có: \(x^2-8x+7=0\)

\(\Leftrightarrow x^2-x-7x+7=0\)

\(\Leftrightarrow x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=7\left(nhận\right)\end{matrix}\right.\)

Thay x=7 vào B, ta được:

\(B=\dfrac{1}{7-1}=\dfrac{1}{6}\)

Vậy: Khi \(x^2-8x+7=0\) thì \(B=\dfrac{1}{6}\)

b) Ta có: \(A=\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}\)

\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^2+2+x^2-1}{x^3-1}\)

\(=\dfrac{2x^2+1}{x^3-1}\)

26 tháng 7 2021

a, \(\dfrac{6}{2x+1}\Rightarrow2x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

2x + 11-12-23-36-6
2x0-21-32-45-7
x0-11/2 ( loại )-3/2 ( loại )1-25/2 ( loại )-7/2 ( loại )

 

c, \(\dfrac{x-3}{x-1}=\dfrac{x-1-2}{x-1}=1-\dfrac{2}{x-1}\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x - 11-12-2
x203-1

 

tương tự .... 

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 5:

\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)

Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.

$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất

$\Rightarrow \sqrt{x}-2=-1$

$\Leftrightarrow x=1$ (thỏa mãn đkxđ)

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 6:

$D(\sqrt{x}+1)=x-3$

$D^2(x+2\sqrt{x}+1)=(x-3)^2$

$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên 

Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên 

Với $D=0\Leftrightarrow x=3$ (tm)

Với $\sqrt{x}$ nguyên:

$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$

$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$

$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$

$\Leftrightarrow x=0; 1$

Vì $x\neq 1$ nên $x=0$.

Vậy $x=0; 3$

13 tháng 3 2022

a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x-11-13-3
x204-2

 

b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

2x-11-12-24-4
x10loạiloạiloạiloại

 

c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

x-11-12-25-510-10
x203-16-411-9

 

d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x+31-13-3
x-2-40-6