Chứng ming BĐT sau: (a+b+c)^2/(ab+bc+ca)>=(c+a)/(b+c)+(b+c)/(a+b)+(a+b)/(c+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b+c\right)^2+12=4\left(a+b+c\right)+2\left(ab+bc+ca\right)\)
Vì \(a=b=c=2\Rightarrow\) a , b , c bằng nhau và bằng 2.
Biến đổi một chút ta có:
\(\left(2+2+2\right)^2+12=4\left(2+2+2\right)+2\left(22+22+22\right)\)
\(\Leftrightarrow6^2+12=4\left(6\right)+2\left(66\right)\)
\(\Leftrightarrow36+12=4\left(6\right)+2\left(66\right)\)
Ta có: 36 chia hết cho 2 , 12 chia hết cho 2
Vậy biểu thức trên xảy ra khi \(a=b=c=2\RightarrowĐPCM\)
Ps: Chưa chắc đúng, mình mới lớp 6 thôi!
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)
ta có\(\frac{ab}{a+b}=\frac{4ab}{4\left(a+b\right)}=\frac{2ab+2ab}{4\left(a+b\right)}\le\frac{a^2+b^2+2ab}{4\left(a+b\right)}=\frac{\left(a+b\right)^2}{4\left(a+b\right)}=\frac{a+b}{4}\)
CMTT ta được \(\frac{bc}{b+c}\le\frac{b+c}{4}và\frac{ca}{c+a}\le\frac{c+a}{4}\)
=>\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+b+c+c+a}{4}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2\left(b+c\right)+ab\left(b+c\right)+bc\left(b+c\right)+ac\left(b+c\right)+abc\)
\(=\left(b+c\right)\left(a^2+ab+bc+ac\right)+abc\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
Vậy BĐT cần chứng minh trở thành:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\frac{1}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le0\) \(?!\)
Bất đẳng thức sai
Thử lại với \(a=b=c=1\) thì \(9\le\frac{64}{9}\) sai thật
BĐT đúng có lẽ là:
\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (đúng theo AM-GM)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
Sửa đề: \(\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
a/ Từ BĐT ban đầu ta có:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)
b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:
\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)
c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:
\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:
\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)
Mặt khác ta cũng có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
a)Áp dụng Bđt Cô si ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cộng theo vế 2 bđt trên ta có:
\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu = khi a=b=c
b)Áp dụng Bđt Cô-si ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)
Cộng theo vế 3 bđt trên ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Đấu = khí a=b=c