\(\left(x-\frac{3}{2}\right).\left(x^2+1\right)=0\)
lm ơn giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
Làm hộ 1 cái thôi , mấy cái kia làm y hệt
\(1,x^2-2\left(m-1\right)x-3-m=0\)
Có: \(\Delta'=\left(m-1\right)^2+3+m\)
\(=m^2-2m+1+3+m\)
\(=m^2-m+4\)
\(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\forall m\)
=> Pt luôn có nghiệm vs mọi m
\(=\dfrac{1}{5}x^3y\cdot x^2y^6=\dfrac{1}{5}x^5y^7\)
\(x=\left(\frac{3}{4}\right)^{3-2}\)
\(=\left(\frac{3}{4}\right):\left(\frac{-2}{3}\right)^3\)
\(=\frac{-81}{32}\)
Chúc bạn học tốt ^^!
a) 2(x-1)+3(x-3)=-2 b) x-1/3=x-2/2
2x-2+3x-9=-2 2 (x-1)=3(x-2)
(2x+3x)+(-2-9)=-2 2x-2=3x-6
5x+(-11)=-2 2x-3x=-6+2
5x=-2+11 -1x=-4
5x=9 x=4
x=1,8
Nhớ nha!
a)(x − 12)2 = 0
=>x − 12 = 0
=> x = 12
b) (x+12)2 = 0,25
=> x + 12 = 0,5 hoặc x + 12= -0,5
=> x = -11,5 hoặc x = -12,5
c) (2x−3)3 = -8
=> 2x - 3 = -2
=> x = 0,5
d) (3x−2)5 = −243
=> 3x - 2 = -3
=> x = -1/3
e) (7x+2)-1 = 3-2
=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)
=> 7x + 2 = 9
=> x = 1
f) (x−1)3 = −125
=> (x−1) = −5
=> x = -4
g) (2x−1)4 = 81
=> 2x - 1 = 3
=> x = 2
h) (2x−1)6 = (2x−1)8
=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1
=> x = 1/2 hoặc x = 1 hoặc x = 0
a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy ..
c/ \(\left(2x-3\right)^3=-8\)
\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-3=-2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
d/ \(\left(3x-2\right)^5=-243\)
\(\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Leftrightarrow3x-2=-3\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy ...
e/ \(\left(x-1\right)^3=-125\)
\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x-1=-5\)
\(\Leftrightarrow x=-4\)
Vậy..
f/ \(\left(2x-1\right)^4=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy...
g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy..
=> x - 3/2 = 0 => x = 3/2 ( TH1 )
=> x2 + 1 = 0 ; x2 = -1
=> x thuộc rỗng
=> x = 3/2