K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

Lồn bâm

22 tháng 12 2021

Gâu gâu 

21 tháng 12 2018

Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

2 tháng 11 2017

S=1+3+3^2+...+3^34=>S=(1+3+3^2+...+3^4)+...+(3^30+3^31+3^32+...+3^34)(1 cặp 4 số)=121+...+3^30(1+3+3^2+...+3^4)=121+...+3^30. 121.

mà 121 chia hết cho11=>S chia hết cho 11

S=1+3+3^2+...+3^34=1+(3+3^2)+...+(3^33+3^34)(1 cặp 2 số)=1+12+...+3^32(3+3^2)=1+12+...+3^32.12=1+12(1+...+3^32)

mà 12 chia hết cho 4=>S/4 dư 1

S=1+3+3^2+...+3^34=1+3+9+(27+81+3^5+3^6)+...(3^31+...+3^34)(nhóm 1 cặp 4 số)=13+...0+..+...0(các  số trong nhóm có chữ số tận cùng =0)=...3=>S=...3

1 tháng 1 2018

\(M=1+3+3^2+............+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)

\(13\left(3^2+3^5+......+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

b, tương tự

1 tháng 1 2018

Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak

26 tháng 8 2021

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)

Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)

21 tháng 2 2022

S=1+5^2+5^3+...+5^2010
S=1+(5^1+5^2)+...+(5^2009+5^2010)
S=1+5(1+5)+5^3(1+5)+...+5^2009(1+5)
S=1+5.6+5^3.6+...+5^2009.6
S=1+6(5+5^3+5^5+...+5^2009)
Ta có 6(5+5^3+...+5^2009) chia hết cho 2 nên S chia 2 dư 1
S=1+6(5+...+5^2009)=1+6.5(1+5^2+5^4+...+5^2008)
S=1+30(5^2+...+5^2008)
Ta có 30(1+5^2+...+5^2008) chia hết cho 10 nên S chia 10 dư 1