K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2015

Giả sử 18n + 3 và 21n +7 cùng chia hết cho số nguyên tố d.

Ta có : 6(21n + 7) - 7( 18n +3) chia hết d \(\Rightarrow\)= 21 chia hết cho d. Vậy d \(\in\){ 3;7}. Hiển nhiên d \(\ne\)3.

Vì 21n + 7 ko chia hết cho 3

Để (18n + 3,21n +7) = 1 thì d \(\ne\)7 tức là 18n + 3 ko chia hết cho 7 ( ta luôn có 21n + 7 chia hết cho 7 ) nếu 18n + 3 - 21 ko chia hết cho 7 \(\Leftrightarrow\) 18(n - 1)  ko chia hết cho 7 \(\Leftrightarrow\) n - 1 ko chia hết cho 7 \(\Leftrightarrow\)\(\ne7k\) + 1 ( k \(\in\)N).

Kết luận : với n \(\ne\)7k + 1( k \(\in\)N) thì 18n + 3 và 21n +7 là hai số nguyên tố cùng nhau.

18 tháng 12 2015

Ban tren tra loi sai vi U(21)=(1;3;7;21)

6 tháng 1 2016

1, Gọi ƯCLN(2n + 3; 4n + 8) là d

=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d

     4n + 8 chia hết cho d

=> 4n + 8 - (4n + 6) chia hết cho d

=> (4n - 4n) + (8 - 6) chia hết cho d

=> 2 chia hết cho d

=> d thuộc {1; 2}

Mà 2n + 3 là số lẻ và 2n + 3 chia hết cho d => d lẻ

=> d = 1

=> ƯCLN(2n + 3; 4n + 8) = 1

hay 2 số này nguyên tố cùng nhau

Vậy...

19 tháng 7 2017

7 tháng 12 2020

em là người đầu tiên đọc được nhưng tiếc là em mới lớp 4 

7 tháng 12 2020

a) Giả sử 4n + 34n + 3 và 2n + 32n + 3 cùng chia hết cho số nguyên tố d thì:
2(2n + 3) − (4n + 3) ⋮ d → 3 ⋮ d → d = 3
Để (2n + 3,4n + 3) = 1 thì d≠3. Ta có:
4n + 3 không chia hết cho 3 nếu 4n không chia hết cho 3 hay n không chia hết cho 3.
Kết luận: Với n không chia hết cho 3 thì 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau.
b) Giả sử 7n + 13 và 2n + 4 cùng chia hết cho số nguyên tố d.
Ta có: 7(2n + 4) − 2(7n + 13) ⋮ d → 2 ⋮ d→ d ∈ {1; 2}
Để (7n + 13, 2n + 4) = 1 thì d ≠ 2
Ta có: 2n + 4 luôn chia hết cho 2 khi đó 7n + 13 không chia hết cho 2 nếu 7n chia hết cho 3 hay n chia hết cho 2..
Kết luận: Với n chẵn thì thì 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.

cGiả sử 18n + 3 và 21n + 7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n + 7) − 7(18n + 3) ⋮ d → 21 ⋮ d → d ∈ {3; 7}. Hiển nhiên d ≠ 3 vì 21n + 721n + 7 không chia hết cho 3.
Để (18n + 3, 21n + 7) = 1 thì d ≠ 7 tức là 18n + 3 không chia hết cho 7, nếu 18n + 3 − 21 không chia hết cho 7 ↔ 18(n − 1) không chia hết cho 7↔n − 1 không chia hết cho 7 ↔ n ≠ 7k + 1 (k ∈ N).
Kết luận: Với n ≠ 7k + 1 (k ∈ N) thì 18n + 3 và 21n + 7 là hai số nguyên tố cùng nhau.

14 tháng 1 2021

a) Đặt d = (4n + 3, 2n + 3).

Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.

Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3

\(\Leftrightarrow n⋮3̸\).

Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.