Cho a > b > 0.Chứng minh rằng:\(\dfrac{a^{2014}-b^{2014}}{a^{2014}+b^{2014}}>\dfrac{a^{2013}-b^{2013}}{a^{2013}+b^{2013}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề \(\Rightarrow a^{2014}+b^{2014}-2\left(a^{2013}+b^{2013}\right)+a^{2012}+b^{2012}=0\)
\(\Leftrightarrow a^{2012}\left(a^2-2a+1\right)+b^{2012}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a=0\text{ hoặc }a=1\right)\text{ và }\left(b=0\text{ hoặc }b=1\right)\)
\(+a=0\text{ hoặc }a=1\text{ thì }a^{2014}=a^{2010}\)
\(+b=0\text{ hoặc }b=1\text{ thì }b^{2014}=b^{2010}\)
Suy ra \(a^{2014}+b^{2014}=a^{2010}+b^{2010}\)
có \(\dfrac{2012+2013}{2013+2014}=\dfrac{2012}{2013+2014}+\dfrac{2013}{2013+2014}\)
mà\(\dfrac{2012}{2013+2014}< \dfrac{2012}{2013}\)
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2014}\)
\(\Rightarrow\dfrac{2012}{2013}+\dfrac{2013}{2014}>\dfrac{2012}{2013+2014}+\dfrac{2014}{2013+2014}\\ \Rightarrow\dfrac{2012}{2013}+\dfrac{2013}{2014}>\dfrac{2012+2013}{2013+2014}\\ \Rightarrow A>B\)
Lời giải:
Áp dụng BĐT AM-GM:
\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)
\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)
\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)
\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)
\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)
Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)
\(A=\dfrac{2014^{2013}+1}{2014^{2014}+1}\Leftrightarrow2014A=\dfrac{2014^{2014}+2014}{2014^{2014}+1}=\dfrac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\dfrac{2013}{2014^{2014}+1}\)
\(B=\dfrac{2014^{2012}+1}{2014^{2013}+1}\Leftrightarrow2014B=\dfrac{2014^{2013}+2014}{2014^{2013}+1}=\dfrac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\dfrac{2013}{2014^{2013}+1}\)
Dễ thấy: \(1+\dfrac{2013}{2014^{2014}+1}< 1+\dfrac{2013}{2014^{2013}+1}\) nên \(2014A< 2014B\) hay \(A< B\)
Thầy phynit, cô @Cẩm Vân Nguyễn Thị, các bạn hok giỏi Toán: @Nguyễn Huy Tú, @Nguyễn Trần Thành Đạt, ..................
Giups em vs
Trước tiên ta xét A A=(2014 x 2014 ) x (2014 x 2014)................x 2014 ( gồm 1006 cặp) A=.....6 x ..........6 ........................ 4 Nhận thấy rằng tích của các số tận cùng là 6 luôn không đổi và luôn tận cùng 6 => A có tận cùng là 4 (1) Xét B=(2013 x 2013) x (2013 x 2013).............. (2013 x 2013) ( gồm 1007 cặp 2013 x 2013) B=........9 x ...........9.......... x9 Nhận thấy nếu có 2 x n cặp số đều tận cùng là 9 thì tận cùng là 1 nếu có 2 x n+1 cặp số thì tận cùng của nó sẽ là 9 => B tận cùng là 9 (2) Từ (1);(2) => A+B tận cùng là 3 => không chia hết cho 5
Trước tiên ta xét A
A=(2014 x 2014 ) x (2014 x 2014)................x 2014 ( gồm 1006 cặp)
A=.....6 x ..........6 ........................ 4
Nhận thấy rằng tích của các số tận cùng là 6 luôn không đổi và luôn tận cùng 6 => A có tận cùng là 4 (1)
Xét B=(2013 x 2013) x (2013 x 2013).............. (2013 x 2013) ( gồm 1007 cặp 2013 x 2013)
B=........9 x ...........9.......... x9
Nhận thấy nếu có 2 x n cặp số đều tận cùng là 9 thì tận cùng là 1 nếu có 2 x n+1 cặp số thì tận cùng của nó sẽ là 9
=> B tận cùng là 9 (2)
Từ (1);(2) => A+B tận cùng là 3 => không chia hết cho 5