Trong không gian Oxyz, cho hai mặt phẳng :
\(\left(\beta\right):x+3ky-z+2=0\)
\(\left(\gamma\right):kx-y+z+1=0\)
Tìm k để giao tuyến của \(\left(\beta\right)\) và \(\left(\gamma\right)\) vuông góc với mặt phẳng
\(\left(\alpha\right):x-y-2z+5=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)
\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)
\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)
\(=0\)
\(\overrightarrow{n}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(1;-2;1\right)\) là một vectơ pháp tuyến của \(\left(\beta\right)\)
Mặt phẳng \(\beta\) đi qua A có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;-2;1\right)\) có phương trình \(x-2y+z-2=0\)
Cho x, y là các số thỏa mãn \(x^2+y^2+xy=3\Leftrightarrow\left(x+y\right)^2-3=xy\)
Vì \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\left(x+y\right)^2-3\le\frac{\left(x+y\right)^2}{4}\)
\(\Leftrightarrow\left(x-y\right)^2\le4\)
Ta có \(\overrightarrow{n}_{\beta}=\left(1;3k;-1\right);\overrightarrow{n}_{\gamma}=\left(k;-1;1\right)\)
Gọi \(d_k=\beta\cap\gamma\)