Cho tam giác ABC có AB = 9cm, AC = 12cm. Trên cạnh AB lấy điểm H và trên cạnh AC lấy điểm K sao cho AH = 6cm, AK=8cm
a/ Chứng minh: HK // BC
b/ Cho biết BC = 18cm. Tính HK
c, Gọi M là trung điểm BC , AM cắt HK tại I . Chứng minh I là trunng điểm của HK
nêu rõ cách giải
a: Xét ΔABC có
\(\dfrac{AH}{AB}=\dfrac{AK}{AC}\left(=\dfrac{2}{3}\right)\)
Do đó: HK//BC
b: Xét ΔBAC có HK//BC
nên \(\dfrac{HK}{BC}=\dfrac{AH}{AB}\)
\(\Leftrightarrow HK=\dfrac{2}{3}\cdot18=12\left(cm\right)\)
c: Xét ΔAMB có HI//BM
nên \(\dfrac{HI}{BM}=\dfrac{AH}{AB}\)
hay \(\dfrac{HI}{BM}=\dfrac{2}{3}\left(1\right)\)
Xét ΔAMC có IK//MC
nên \(\dfrac{IK}{MC}=\dfrac{AK}{AC}\)
hay \(\dfrac{IK}{MC}=\dfrac{2}{3}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{IH}{MB}=\dfrac{IK}{MC}\)
mà MB=MC
nên IH=IK
hay I là trung điểm của HK