K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

23 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Khi quay xung quanh trục AB, giao điểm M của nửa đường tròn đường kính AB và cạnh CD sẽ tọ nên giao tuyến của mặt nón và mặt cầu.

Vẽ MH ⊥ AB

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác ta có CA 2  = CM.CB nên ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó: BM = CB − CM = 3a/2 và HM = 3a/4

21 tháng 8 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi S 1  là diện tích toàn phần của hình nón và  S 2  là diện tích mặt cầu.

Ta có:  S 1  = πrl + πr 2 = 3 πa 2

S 2  = 4 πr 2 = 3 πa 2

Vậy  S 1  =  S 2

31 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tam giác vuông ABC có BC = 2a và AC = a nên ta suy ra ∠ ABC = 30 ° . Khi quay xung quanh trục AB cạnh BC tạo nên mặt nón tròn xoay có góc ở đỉnh bằng 60 °  và có đường tròn đáy có bán kính AC = a. Khi xoay xung quanh trục AB nửa đường tròn đường kính AB tạo nên mặt cầu có tâm là trung điểm I để đoạn AB và bán kính r = AB/2.

5 tháng 1 2021

\(\left(\alpha\right)//SA\) và BC nên \(\left(\alpha\right)//\left(SAD\right)\)

=> MQ //SA, NP//SD  ta có

MN//PQ//AD//BC

ABCD : \(\dfrac{BM}{BA}=\dfrac{CN}{CD}\left(1\right)\)

Theo định lí Ta let trong tam giác:

\(\Delta SAB:\dfrac{BM}{BA}=\dfrac{BQ}{BS}=\dfrac{MQ}{SA}\left(2\right)\)

\(\Delta SCD:\dfrac{CN}{CD}=\dfrac{CP}{CS}=\dfrac{PN}{SD}\left(3\right)\)

Từ (1) (2) và (3) suy ra: \(MQ=NP=\dfrac{b-x}{b}a\)

\(PQ=\dfrac{x}{b}.2a\) 

\(MN=a+\dfrac{x}{b}a\)

=> thiết diện là hình thang cân và \(S_{td}=\dfrac{1}{2}\left(MN+PQ\right)\sqrt{MQ^2-\left(\dfrac{MN-PQ}{2}\right)^2}\)

\(\dfrac{1}{2}\left(\dfrac{ab+ax}{b}+\dfrac{2ax}{b}\right)\sqrt{\dfrac{a^2\left(b-x\right)^2}{b^2}-\dfrac{a^2\left(b-x\right)^2}{4b^2}}\)

=\(\dfrac{1}{2}.\dfrac{a\left(b+3x\right)}{b}.\dfrac{a\sqrt{3}\left(b-x\right)}{2b}\)

\(\dfrac{a^2\sqrt{3}}{12b^2}\left(3x+b\right)\left(3b-3x\right)\le\dfrac{a^2\sqrt{3}}{12b^2}\left(\dfrac{3x+b+3b-3x}{2}\right)^2=\dfrac{a^2\sqrt{3}}{3}\)

Vậy diện tích lớn nhất của thiết diện là \(\dfrac{a^2\sqrt{3}}{3}\) khi x= \(\dfrac{b}{3}\)

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

26 tháng 5 2017

Hỏi đáp Toán

31 tháng 3 2017

Hỏi đáp Toán

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.