Chứng minh aaa luôn chia hế t cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b εN)
TH1: a là số lẻ, b lẻ thì tổng a +b chẵn ==> ab(a + b) chia hết cho 2
TH2: a chẵn, b chẵn thì đương nhiên ab(a + b) chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
TH3: a chẵn, b lẻ hoặc a lẻ, b chẵn thì đương nhiên ab(a + b) cũng chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
b) Chứng minh rằng ab + ba chia hế cho 11.
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a+b) chia hết cho 11
c) Chứng minh aaa luôn chia hết cho 37.
aaa = a. 111 = a.37.3 chia hết cho 37
Ta có : aaa = 111 x a = 37 x 3 x a
=> aaa luôn chia hết cho 37
Còn cái kia chịu
Ta có
aaa = 100a+10a+a=111a
Vì 111 chia hết cho 37
=>111a chia hết cho 37 hay aaa chia hết cho 37
aaa= a x 100 + a x 10 + a
= a x ( 100+10+1)
= a x 111
vì 111 chia hết cho 37 nên a x 111 luôn chia hết cho 37 với mọi a
vậy aaa chia hết cho 37 với mọi a là số tự nhiên
\(aa=a\times100+a\times10+a=a\times\left(100+10+1\right)=a\times111=a\times3\times37\)
Vậy \(aaa⋮37\)
Chúc bạn học tốt
aaa = a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
Vậy số aaa luôn chia hết cho 37
111 chia hết cho 37
222; 333; 444; 555 ... 999 đều chia hết cho 111
nên aaa luôn chia hết cho 37
Ta có :100.a+10a+a=111a
Mà 111a chia hết cho 37 suy ra aaa chia hết cho 37
k tớ nha tớ chắc chắn đúng 100% luôn ^.^
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
Ta có :
aaabbb = 111000a + 111b
= 111 (100a + b)
= 37 . 3 . (100a + b) chia hết cho 37
ĐPCM
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
a)
- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2
- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2
-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2
vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2
Ta có:aaa=111.a=37.3.a
=>aaa luôn chia hết cho 37