Tính giá trị của biểu thức:
C = \(\left(1\dfrac{1}{2}\right)\left(1\dfrac{1}{6}\right)\left(1\dfrac{1}{10}\right)\left(1\dfrac{1}{15}\right)....\left(1\dfrac{1}{210}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(3\dfrac{5}{6}-1\dfrac{1}{3}\right)\left(3\dfrac{4}{15}-2\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left(3+\dfrac{5}{6}-1+\dfrac{1}{3}\right)\left(3+\dfrac{4}{15}-2+\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left[\left(3-1\right)+\left(\dfrac{5}{6}+\dfrac{1}{3}\right)\right]+\left[\left(3-2\right)+\left(\dfrac{4}{15}+\dfrac{3}{5}\right)\right]\)
\(\Leftrightarrow A=\left[2+\left(\dfrac{5}{6}+\dfrac{2}{6}\right)\right]+\left[1+\left(\dfrac{4}{15}+\dfrac{9}{15}\right)\right]\)
\(\Leftrightarrow A=\left(2+\dfrac{7}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=\left(2+1+\dfrac{1}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=3\dfrac{1}{6}+1\dfrac{13}{15}\)
Vậy...
\(b,B=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^{10}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(\Leftrightarrow B=\dfrac{6}{\left(2.3\right).5}\)
\(\Leftrightarrow B=\dfrac{6}{6.5}\)
\(\Leftrightarrow B=\dfrac{1}{5}\)
Vậy....
B = \(\left(-1\dfrac{1}{6}\right)\) : \(\left(\dfrac{-10}{3}+\dfrac{9}{4}\right)\) - \(\left(-\dfrac{3}{8}\right)\) : \(\left(8-\dfrac{51}{8}\right)\)
B = \(\dfrac{-7}{6}\) : \(\dfrac{-13}{12}\) - \(\left(-\dfrac{3}{8}\right)\) : \(\dfrac{13}{8}\)
B = \(\dfrac{14}{13}\) - \(\dfrac{-3}{13}\)
B = \(\dfrac{17}{13}\)
\(A=\dfrac{1}{2}.\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(\dfrac{1}{2015.2017}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1}.\dfrac{2}{3}\right).\left(\dfrac{3}{2}.\dfrac{3}{4}\right).\left(\dfrac{4}{3}.\dfrac{4}{5}\right)....\left(\dfrac{2016}{2015}.\dfrac{2016}{2017}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1}.\dfrac{2}{3}\right).\left(\dfrac{3}{2}.\dfrac{3}{4}\right).\left(\dfrac{4}{3}.\dfrac{4}{5}\right).....\left(\dfrac{2016}{2015}.\dfrac{2016}{2017}\right)\)
\(=\dfrac{2016}{2017}\)
\(a,\left(7+3\dfrac{1}{4}-\dfrac{3}{5}\right)+\left(0,4-5\right)-\left(4\dfrac{1}{4}-1\right)\)
\(=\left(7+\dfrac{13}{4}-\dfrac{3}{5}\right)-\dfrac{23}{5}-\left(\dfrac{17}{4}-1\right)\)
\(=7+\dfrac{13}{4}-\dfrac{3}{5}-\dfrac{23}{5}-\dfrac{17}{4}+1\)
\(=\left(7+1\right)+\left(\dfrac{13}{4}-\dfrac{17}{4}\right)-\left(\dfrac{3}{5}+\dfrac{23}{5}\right)\)
\(=8-\dfrac{4}{4}-\dfrac{26}{5}\)
\(=7-\dfrac{26}{5}\)
\(=\dfrac{9}{5}\)
\(b,\dfrac{2}{3}-\left[\left(-\dfrac{7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}-\left(-\dfrac{7}{4}-\dfrac{1}{2}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{14}{8}-\dfrac{4}{8}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{21}{8}\right)\)
\(=\dfrac{2}{3}+\dfrac{21}{8}\)
\(=\dfrac{79}{24}\)
\(c,\left(9-\dfrac{1}{2}-\dfrac{3}{4}\right):\left(7-\dfrac{1}{4}-\dfrac{5}{8}\right)\)
\(=\left(\dfrac{36}{4}-\dfrac{2}{4}-\dfrac{3}{4}\right):\left(\dfrac{56}{8}-\dfrac{2}{8}-\dfrac{5}{8}\right)\)
\(=\dfrac{31}{4}:\dfrac{49}{8}\)
\(=\dfrac{62}{49}\)
\(d,3-\dfrac{1-\dfrac{1}{7}}{1+\dfrac{1}{7}}=3-\dfrac{\dfrac{7}{7}-\dfrac{1}{7}}{\dfrac{7}{7}+\dfrac{1}{7}}=3-\left(\dfrac{6}{7}:\dfrac{8}{7}\right)=3-\dfrac{3}{4}=\dfrac{9}{4}\)
\(C=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{210}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{209}{210}\)
a: =2+6*(-1)^2019+2026
=2028-6
=2022
b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)
\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)