Cho \(\Delta ABC\) cân tại A, trên cạnh BC lấy hai điểm D và E sao cho BD = CE (D nằm giữa B và E)
a) Chứng minh \(\Delta ADB=\Delta AEC\)
b) Qua D kẻ DH vuông góc với AB (\(H\in AB\)), qua E kẻ EK vuông góc với AC (\(K\in AB\)). Tia KE cắt tia HD tại M. Chứng minh DH = EK
c) Chứng minh \(\Delta DME\) cân
d) Gọi G là trọng tâm của \(\Delta ABC\). Chứng minh AM là đường trung trực của DE và ba điểm A, M, G thẳng hàng
a: Xét ΔADB và ΔAEC có
AB=AC
góc B=góc C
BD=CE
Do đó:ΔADB=ΔAEC
b: Xét ΔAHD vuông tại H và ΔAKE vuông tại K có
AD=AE
\(\widehat{HAD}=\widehat{KAE}\)
Do đó; ΔAHD=ΔAKE
Suy ra: DH=EK
c: XétΔMDE có \(\widehat{MDE}=\widehat{MED}\)
nên ΔMDE cân tại M