K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

a) ta có : \(\left(2+i\sqrt{3}\right)^2=2^2+2.2.i\sqrt{3}+\left(i\sqrt{3}\right)^2\)

\(=4+4\sqrt{3}i-3=1+4\sqrt{3}i\)

b) ta có : \(\left(1+2i\right)^3=1^3+3.1^2.2i+3.1.\left(2i\right)^2+\left(2i\right)^3\)

\(=1+6i-6-8i=-5-2i\)

c) \(\left(3-i\sqrt{2}\right)^3=3^3-3.3^2.i\sqrt{2}+3.3.\left(i\sqrt{2}\right)^2+\left(i\sqrt{2}\right)^3\)

\(=27-27\sqrt{2}i-18-2\sqrt{2}i=9-29\sqrt{2}i\)

d) \(\left(2-i\right)^3=2^3-2.2^2.i+2.2.i^2-i^3\)

\(=8-8i-4+i=4-7i\)

20 tháng 4 2017

a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.

b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)

= (5x)2 – 5x + 1 = 25x2 – 5x + 1.

c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x

Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)

= (y – x)2 : (y – x) = y - x.


20 tháng 4 2017

Bài giải:

a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.

b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)

= (5x)2 – 5x + 1 = 25x2 – 5x + 1.

c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x

Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)

= (y – x)2 : (y – x) = y - x.

Bài 1:

a) Ta có: \(\sqrt{\left(23-15\sqrt{3}\right)^2}\)

\(=\left|23-15\sqrt{3}\right|\)

\(=\left|\sqrt{529}-\sqrt{675}\right|\)

\(=\sqrt{675}-\sqrt{529}\)

\(=15\sqrt{3}-23\)

b) Ta có: \(\sqrt{\left(2-2\sqrt{3}\right)^2}\)

\(=\left|2-2\sqrt{3}\right|\)

\(=2\sqrt{3}-2\)

c) Ta có: \(\sqrt{\left(15-4\sqrt{3}\right)^2}\)

\(=\left|15-4\sqrt{3}\right|\)

\(=15-4\sqrt{3}\)

d) Ta có: \(\sqrt{\left(16-6\sqrt{7}\right)^2}\)

\(=\left|16-6\sqrt{7}\right|\)

\(=\left|\sqrt{256}-\sqrt{252}\right|\)

\(=16-6\sqrt{7}\)

f) Ta có: \(\sqrt{\left(22-8\sqrt{3}\right)^2}\)

\(=\left|22-8\sqrt{3}\right|\)

\(=\left|\sqrt{484}-\sqrt{192}\right|\)

\(=22-8\sqrt{3}\)

g) Ta có: \(\sqrt{\left(9-4\sqrt{2}\right)^2}\)

\(=\left|9-4\sqrt{2}\right|\)

\(=9-4\sqrt{2}\)

h) Ta có: \(\sqrt{\left(13-4\sqrt{3}\right)^2}\)

\(=\left|13-4\sqrt{3}\right|\)

\(=13-4\sqrt{3}\)

i) Ta có: \(\sqrt{\left(7-3\sqrt{3}\right)^2}\)

\(=\left|7-3\sqrt{3}\right|\)

\(=7-3\sqrt{3}\)

2 tháng 7 2021

a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

 

a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=32+8\sqrt{15}-8\sqrt{15}-30\)

=2

 

6 tháng 8 2017

(2a-b)- 2 x ( 2a-b) x (a+b) + (a + b)2

= [(2a-b) - (a+b)]2

19 tháng 5 2018

a) 1 + 4i 3 ;

b) – 11 – 2i;

c) 7 − 6i 2 ;

d) 2 – 11i.

11 tháng 7 2018

B1:

1. \(\sqrt{12.5}\cdot\sqrt{0.2}\cdot\sqrt{0.1}\) \(=\sqrt{12.5\cdot0.2\cdot0.1}\) \(=\sqrt{0.25}=0.5\)

2.\(\sqrt{48.4}\cdot\sqrt{5}\cdot\sqrt{0.5}\) = \(\sqrt{48.4\cdot5\cdot0.5}\) =\(\sqrt{121}=11\)

B2:

a, \(\left(\sqrt{7}+\sqrt{3}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{3}+3=7+2\cdot\sqrt{21}+3\)\(=10+2\sqrt{21}\)

b,\(\left(\sqrt{11}-\sqrt{5}\right)^2=11-2\sqrt{55}+5=16-2\sqrt{55}\)

c,\(\left(\sqrt{x}+\sqrt{y}\right) ^2=x+2\sqrt{xy}+y\)

d.\(\left(\sqrt{13}+\sqrt{7}\right)^2=13+2\sqrt{7}+7=20+2\sqrt{7}\)

e,\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\)

f,\(\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1=4-2\sqrt{3}\)

1 tháng 4 2017

a) 2i(3 + i)(2 + 4i) = 2i(2 + 14i) = -28 + 4i

b)

c) 3 + 2i + (6 + i)(5 + i) = 3 + 2i + 29 + 11i = 32 + 13i

d) 4 - 3i + = 4 - 3i + = 4 - 3i +

= (4 + ) - (3 + )i =