Cho a,b,c là các số nguyên dương đôi một khác nhau. Cmr: (a-b)5+(b-c)5+(c-a)5 chia hết cho 5(a-b)(b-c)(c-a)
cac ban giup minh giai chi tiet voi minh like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
Đặt \(x=a-b,y=b-c,z=c-a\to x+y+z=0.\) Ta có
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5+z^5=x^5+y^5+\left(-x-y\right)^5=x^5+y^5-\left(x+y\right)^5.\)
Mà \(\left(x+y\right)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5,\) suy ra
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)=5xyz\left(x^2+xy+y^2\right)\vdots5xyz=5\left(a-b\right)\left(b-c\right)\left(c-a\right).\)
Suy ra điều phải chứng minh.
không hiểu