Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}vàa+b+c\ne0\) Tính M=\(\frac{a^2b^2c^{1930}}{b^{1935}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))
1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)
2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)
Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
ta có : \(\frac{a}{b}=1\Rightarrow a=b\) 1
\(\frac{b}{c}=1\Rightarrow b=c\) 2
\(\frac{c}{a}=1\Rightarrow c=a\) 3
từ 1 2 3 \(\Rightarrow\) a=b=c
\(\Rightarrow\)M=\(\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Vì \(a+b+c\ne0\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{3+2+1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Vậy \(M=1\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)
=>a=b=c=d
=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)
Ta có:a/b=b/c=c/d=d/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1
=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)
Thay vào M sau đó tìm được M=2
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)
\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)
Vậy \(M=\frac{1}{2}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{2b}=\frac{1}{2}\Rightarrow a=\frac{1}{2}.2b\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b}{2c}=\frac{1}{2}\Rightarrow b=\frac{1}{2}.2c\Rightarrow b=c\) (2)
\(\Rightarrow\frac{c}{2a}=\frac{1}{2}\Rightarrow c=\frac{1}{2}.2a\Rightarrow c=a\) (3)
\(\Rightarrow\frac{d}{2a}=\frac{1}{2}\Rightarrow d=\frac{1}{2}.2a\Rightarrow d=a\) (4)
Từ (1);(2);(3):(4) \(\Rightarrow a=b=c=d\) .Thay vào A ta được :
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a+2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(=\frac{a}{2a}+\frac{4021a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{a+4021a+a+a}{2a}=\frac{4024a}{2a}=\frac{4024}{2}=2012\)
Vậy \(A=2012\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{1}{2}.4=2\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c (a; b; c khác 0 vì b; a; c là các mẫu số)
=> \(M=\frac{a^2b^2c^{1930}}{b^{1935}}=\frac{b^2b^2b^{1930}}{b^{1935}}=\frac{b^{1934}}{b^{1935}}=\frac{1}{b}\)
Mà a = b = c
=> \(M=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)