K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ta có : \(\dfrac{1}{9}=\dfrac{1}{9}\)

\(\dfrac{1}{10}< \dfrac{1}{9}\)

.....

\(\dfrac{1}{19}< \dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{19}< \dfrac{1}{9}+\dfrac{1}{9}+...+\dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{1}{9}+\dfrac{1}{10}+..+\dfrac{1}{19}< \dfrac{11}{9}\)

Hay \(\dfrac{1}{9}+\dfrac{1}{10}+..+\dfrac{1}{19}< \dfrac{9}{9}=1\)

11 tháng 4 2017

Đặt biểu thức trên là A.

Ta có A có 11 số hạng, chia A thành 2 nhóm, mỗi nhóm có 5 số hạng còn thừa 1 số hạng như sau:

\(A=\dfrac{1}{9}+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}\right)\)

Lại có: \(\dfrac{1}{10}=\dfrac{1}{10};\dfrac{1}{11}< \dfrac{1}{10};...;\dfrac{1}{14}< \dfrac{1}{10}\) \(\Rightarrow\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}< \dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\) (5 số hạng)

\(\Rightarrow\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}< \dfrac{1}{10}.5=\dfrac{1}{2}\) (1)

\(\dfrac{1}{15}=\dfrac{1}{15};\dfrac{1}{16}< \dfrac{1}{15};...;\dfrac{1}{19}< \dfrac{1}{15}\)

\(\Rightarrow\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}< \dfrac{1}{15}+\dfrac{1}{15}+...+\dfrac{1}{15}\) (5 số hạng)

\(\Rightarrow\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}< \dfrac{1}{15}.5=\dfrac{1}{3}\)(2)

\(\dfrac{1}{9}=\dfrac{1}{9}\left(3\right)\)

Từ (1) và (2) ta suy ra:

\(\dfrac{1}{9}+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}\right)< \dfrac{1}{9}+\dfrac{1}{2}+\dfrac{1}{3}\) \(\Rightarrow A< \dfrac{1}{9}+\dfrac{1}{2}+\dfrac{1}{3}\)

\(\Rightarrow A< \dfrac{2}{18}+\dfrac{9}{18}+\dfrac{6}{18}\)

\(\Rightarrow A< \dfrac{2+9+6}{18}\)

\(\Rightarrow A< \dfrac{17}{18}< \dfrac{18}{18}=1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

31 tháng 3 2017

A = \(\dfrac{-101}{200}>\dfrac{-100}{200}=\dfrac{-1}{2}\)

30 tháng 5 2017

Nhận thấy A có 99 hạng tử mà mỗi hạng tử chứa dấu âm nên viết gọn\(A=-\dfrac{3}{4}.\dfrac{8}{9}.....\dfrac{9999}{10000}=-\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}....\dfrac{99.101}{100^2}=-\dfrac{\left(1.2...99\right).\left(3.4...101\right)}{\left(2.3..100\right).\left(2.3...100\right)}=-\dfrac{101}{2.100}=-\dfrac{101}{200}< -\dfrac{1}{2}\)

6 tháng 5 2017

\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)

=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)

Vậy tổng trên bé hơn 1

A=-1-3-5-...-2017

=-(1+3+5+...+2017)

Xét tổng B=1+3+5+...+2017

Tổng B có:(2017-1):2+1=1009(số hạng)

Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)

=>A=-B=-1018081

6 tháng 5 2017

bn cho mk hỏi tai sao B lai = 1+3+5+..+2017 vay bn?

28 tháng 3 2017

b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)

Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)

Thay (1) vào đề bài:

\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)

\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)

\(\Rightarrow49x+\dfrac{16}{99}=50x\)

\(\Rightarrow x=\dfrac{16}{99}\)

Vậy \(x=\dfrac{16}{99}.\)

28 tháng 3 2017

thank bn nhìu nhìu vui

4 tháng 5 2017

Câu hỏi của Dung Van - Toán lớp 6 | Học trực tuyến tìm kĩ trước khi hỏi nhé.

4 tháng 5 2017

trùng tên ????????????????

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

4 tháng 5 2017

Áp dụng tính chất : \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (\(a;b,m\in N\)*)

Ta có :

\(A=\dfrac{100^{2007}+1}{100^{2008}+1}< \dfrac{100^{2007}+1+99}{100^{2008}+1+99}=\dfrac{100^{2007}+100}{100^{2008}+100}=\dfrac{100\left(100^{2006}+1\right)}{100\left(100^{2007}+1\right)}=\dfrac{100^{2006}+1}{100^{2007}+1}=B\)

\(\Rightarrow A< B\)

a: -1/200<0<1/2000

b: \(\dfrac{-11}{56}=\dfrac{-275}{56\cdot25}=\dfrac{-275}{1400}\)

\(\dfrac{-25}{124}=\dfrac{-275}{124\cdot11}=\dfrac{-275}{1364}\)

mà 1400>1364

nên \(\dfrac{-11}{56}>-\dfrac{25}{124}\)