TÌM X
\(\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+...+\frac{1}{X.\left(X+3\right)}=\frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TÌM X
\(\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+...+\frac{1}{X.\left(X+3\right)}=\frac{1}{8}\)
bạn ơi như là cô giáo cho đề sai rồi kết quả phải là \(\frac{375}{376}\)thì mới giải được
Ta có:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+3}=\frac{125}{376}:\frac{1}{3}=\frac{375}{376}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{375}{376}=\frac{1}{376}\Leftrightarrow x+3=376\Leftrightarrow x=373\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
\(1-\frac{1}{x+3}=\frac{375}{376}\)
\(\frac{x+2}{x+3}=\frac{375}{376}\)
=> x + 2 = 375
=> x = 375 - 2
=> x = 373
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)
\(A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{16}-\frac{1}{19}\right)\)
\(A=\frac{1}{3}\cdot\left(1-\frac{1}{19}\right)\)
\(A=\frac{1}{3}\cdot\frac{18}{19}=\frac{6}{19}\)
\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)
\(B=\frac{1}{4\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot16}+\frac{1}{16\cdot20}+\frac{1}{20\cdot24}\)
\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{16}+\frac{1}{16}-\frac{1}{20}+\frac{1}{20}-\frac{1}{24}\right)\)
\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{24}\right)\)
\(B=\frac{1}{4}\cdot\frac{5}{24}=\frac{5}{96}\)
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)
\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{19}\right)\)
\(A=\frac{1}{3}.\frac{18}{19}\)
\(A=\frac{6}{19}\)
\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)
\(B=\frac{1}{4.8}+\frac{1}{8.12}+\frac{1}{12.16}+\frac{1}{16.20}+\frac{1}{20.24}\)
\(B=\frac{1}{4}\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{24}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{24}\right)\)
\(B=\frac{1}{2}.\frac{5}{24}\)
\(B=\frac{5}{48}\)
đây là toán lớp 5 cơ mà
a)A=\(\frac{1}{1x4}\)+\(\frac{1}{4x7}\)+...+\(\frac{1}{16x19}\)
A=\(\frac{1}{3}\)x3x(\(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+.......+\(\frac{1}{16.19}\)
A=\(\frac{1}{3}\)x(\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+............+\(\frac{3}{16.19}\))
A=\(\frac{1}{3}\)x(1-1/4+1/4-1/7+......+1/13-1/16+1/16-1/19)
A=\(\frac{1}{3}\)x(1-\(\frac{1}{19}\))
A=\(\frac{1}{3}\)x\(\frac{18}{19}\)
A=\(\frac{6}{19}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x\left(x+3\right)}=\frac{18}{19}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{18}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
...............
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{6}{19}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(3A=1-\frac{1}{x+3}\)
\(\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16